

CONDUCTIVE POLYMER ALUMINUM SOLID CAPACITORS

CAT. No. E1001G

INDEX					
PRODUCT SEARCH	SERIES TABLE				
PRODUCT SEARCH	GROUP CHART				
	PRECAUTIONS AND GUIDELINES (Conductive Polymer)				
	PART NUMBERING SYSTEM	♦			
	ENVIRONMENTAL CONSIDERATION				
PRODUCTION GUIDE	PACKAGING				
	TAPING SPECIFICATIONS				
	RECOMMENDED REFLOW CONDITION				
	STANDARDIZATION				
	WORLD-WIDE MANUFACTURING LOCATIONS				
PRODUCT SPECIFICATIONS	CONDUCTIVE POLYMER TYPE				
APPENDIX (GLOBAL CODE)					

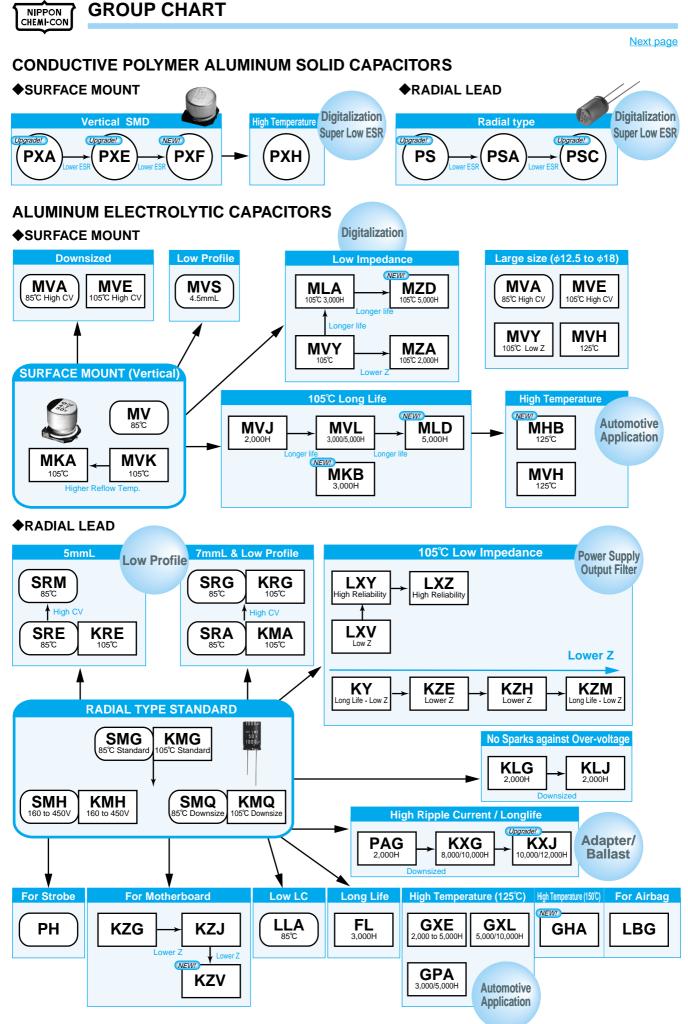
CAPACITOR SERIES TABLE, CONTENTS

Next page

										Next page
	Serie	s	Features	Endurance (+R=With ripple)	Standard type	Low impedance	Solvent-proof	Terminal type	Rated voltage range (Vdc)	Capacitance range (µF)
		PXF (NEW!)	Vertical type, super low ESR	105℃ 2,000 hours		\bullet	ullet	SMD	2.5 to 6.3	220 to 1,000
		PXE (Upgrade!)	Vertical type, super low ESR	105℃ 2,000 hours		•	•	SMD	2.5 to 16	33 to 2,700
Con	ductive	PXA (Upgrade!)	Vertical type, super low ESR	105℃ 1,000 to 2,000 hours	\bullet	\bullet	\bullet	SMD	2.5 to 25	3.3 to 1,500
Poly	/mer	РХН	125°C Vertical type	125℃ 1,000 hours		\bullet	ullet	SMD	2.5 to 20	22 to 1,000
Elec	trolyte Type	PSC (Upgrade!)	Radial lead type, super low ESR, high ripple current	105℃ 2,000 hours			ullet	Radial	2.5 to 16	270 to 2,700
		PSA	Super low ESR, high ripple current	105℃ 2,000 hours		\bullet	ullet	Radial	2.5 to 16	47 to 1,000
		PS (Upgrade!)	Radial lead type, super low ESR	105℃ 2,000 hours	\bullet		\bullet	Radial	2.5 to 35	18 to 1,500
		MVS	4.5mm height	85°C 2,000 hours			ullet	SMD	4 to 50	0.1 to 220
		MVA	5.5 to 22.0mm max. height, downsized	85°C 2,000 hours				SMD	4 to 450	0.1 to 10,000
		MV	5.5 to 10.5mm max. height	85°C 1,000 to 2,000 hours			ullet	SMD	4 to 63	0.1 to 1,000
		MVE	5.5 to 22.0mm max. height, downsized	105℃ 1,000 to 2,000 hours				SMD	6.3 to 450	0.47 to 6,800
		Μνκ	5.5 to 10.5mm max. height	105°C 1,000 to 2,000 hours	ullet		lacksquare	SMD	6.3 to 50	0.1 to 1,000
		МКА	5.5 to 10.5mm max. height	105°C 1,000 to 2,000 hours			lacksquare	SMD	6.3 to 50	0.1 to 1,000
unt		MZA	6.1 to 10.5mm max. height, very low impedance	105°C 2,000 hours			lacksquare	SMD	6.3 to 80	3.3 to 1,500
Surface Mount	Vertical	ΜVΥ	5.5 to 22.0mm max. height	105°C 1,000 to 5,000 hours				SMD	6.3 to 100	1.0 to 8,200
face	Туре	MZD (NEW!)	105°C5,000 hours, low impedance, long life	105℃ 5,000 hours		\bullet	\bullet	SMD	6.3 to 50	10 to 470
Sur		MLA	Low impedance, long life	105℃ 3,000 hours		\bullet	\bullet	SMD	6.3 to 50	10 to 1,000
		MVJ	6.0mm max. height	105℃ 2,000 hours			ullet	SMD	6.3 to 50	0.1 to 100
		MLD (NEW!)	105°C5,000 hours, long life	105℃ 5,000 hours			ullet	SMD	6.3 to 50	0.1 to 1,000
		MVL	6.0 to 10.5mm max. height	105℃ 3,000 to 5,000 hours			\bullet	SMD	6.3 to 50	0.1 to 1,000
		MVH	6.0 to 22.0mm max. height	125℃ 1,000 to 5,000 hours				SMD	10 to 450	3.3 to 4,700
		MHB (NEW!)	10.5mm max. height (Ask Engineering No767 in detail)	125℃ 2,000 hours			\bullet	SMD	10 to 35	47 to 470
		MKB (NEW!)	10.5mm max. height	105℃ 3,000 hours			ullet	SMD	400	2.2 to 4.7
		MV-BP	5.5mm max. height, bi-polar	85°C 2,000 hours			\bullet	SMD	4 to 50	0.1 to 47
		MVK-BP	6.0mm max. height, bi-polar	105℃ 1,000 hours			ullet	SMD	6.3 to 50	0.1 to 47
		SRM	5mm height, downsized	85°C 1,000 hours			\bullet	Radial	4 to 50	0.1 to 330
		SRE	5mm height	85°C 1,000 hours	\bullet			Radial	4 to 50	0.1 to 100
		KRE	5mm height	105℃ 1,000 hours	\bullet		\bullet	Radial	6.3 to 50	0.1 to 100
	Low Profile	SRA	7mm height	85°C 1,000 hours				Radial	4 to 63	0.1 to 470
	-	КМА	7mm height	105℃ 1,000 hours	•		\bullet	Radial	4 to 63	0.1 to 220
		SRG	ϕ 4×7 to ϕ 18×25mm, low profile	85°C 1,000 to 2,000 hours			•	Radial	4 to 50	0.1 to 10,000
		KRG	ϕ 4×7 to ϕ 18×25mm, low profile	105°C 1,000 hours			•	Radial	6.3 to 50	0.1 to 10,000
ŀ		SMQ	Downsized	85°C 2,000 hours	•			Radial	6.3 to 450	0.1 to 47,000
	-	KMQ	Downsized	105℃ 1,000 to 2,000 hours +R	•			Radial	6.3 to 450	0.1 to 47,000
		SMG	General, downsized	85°C 2,000 hours	•			Radial	6.3 to 450	0.1 to 39,000
Ire	General	KMG	General, downsized	105℃ 1,000 to 2,000 hours +R	•			Radial	6.3 to 450	0.1 to 22,000
Miniature	Purpose	SME	General (Ask Engineering Bulletin No511 in detail)	85°C 2,000 hours				Radial	6.3 to 450	0.1 to 15,000
Min		KME	General (Ask Engineering Bulletin No512 in detail)	105℃ 1,000 hours +R				Radial	6.3 to 400	0.1 to 15,000
		SME-BP	Bi-polar, general	85°C 2,000 hours	•		•	Radial	6.3 to 100	0.47 to 6,800
		KME-BP	Bi-polar, general	105°C 1,000 hours	•		•	Radial	6.3 to 100	0.47 to 6,800
ŀ		KZM	Lowest impedance, long life	105℃ 6,000 to 10,000 hours +R		•		Radial	6.3 to 50	27 to 10,000
	-	KZH	Lowest impedance, long life	105℃ 5,000 to 6,000 hours +R				Radial	6.3 to 35	47 to 8,200
		KZE	Lowest impedance, long life	105℃ 1,000 to 5,000 hours +R		•		Radial	6.3 to 100	6.8 to 6,800
	High	КҮ	Low impedance, long life	105°C 4,000 to 10,000 hours +R		•		Radial	6.3 to 100	0.47 to 18,000
	Frequency	1.17	Low impedance, downsized	105°C 2,000 to 8,000 hours +R		•	•	Radial	6.3 to 63	12 to 18,000
	Use	LXZ	Low impedance, downsized							
	Use		Low impedance, high reliability	105℃ 2,000 to 8,000 hours +R	\bullet	\bullet	\bullet	Radial	10 to 63	10 to 8,200
	Use		• •	105℃ 2,000 to 8,000 hours +R 105℃ 2,000 to 5,000 hours +R	•	•	•	Radial Radial	10 to 63 6.3 to 100	10 to 8,200 5.6 to 15,000

: Promotional products

▲ : Some of range are solvent-proof.

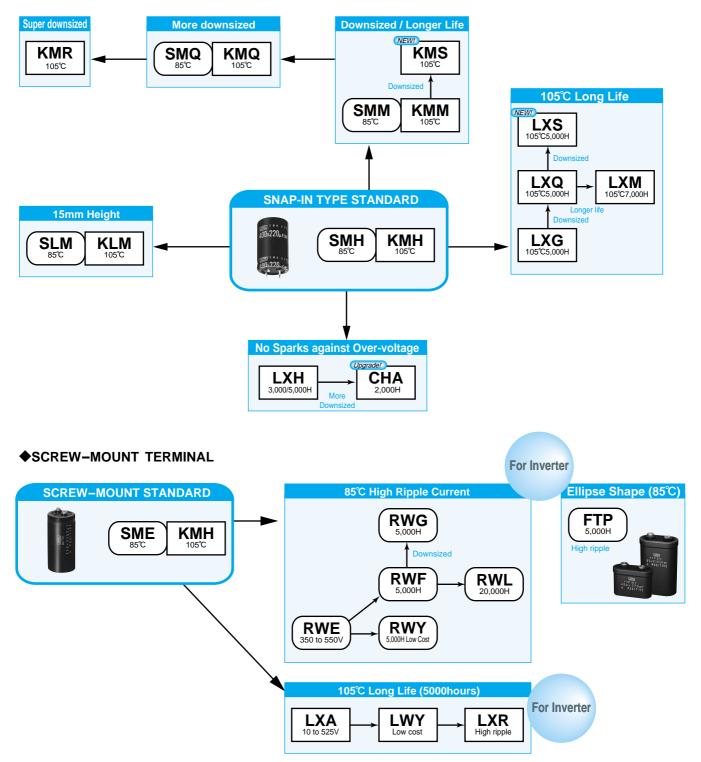

CAPACITOR SERIES TABLE, CONTENTS

Previous page

_										
Series		25	Features	Endurance (+R=With ripple)	Standard type	Low impedance	Solvent-proof	Terminal type	Rated voltage range (Vdc)	Capacitance range (μF)
		KXJ (Upgrade!)	Downsized, long life, for input filtering	105°C 10,000 to 12,000 hours +R		\bullet		Radial	160 to 450	6.8 to 680
		KXG	Downsized, long life, for input filtering	105°C 8,000 to 10,000 hours +R		\bullet		Radial	160 to 450	6.8 to 330
		КМХ	Long life, for input filtering (Ask Engineering Bulletin No 646 in detail)	105°C 8,000 to 10,000 hours +R		\bullet		Radial	160 to 450	3.3 to 680
		SMH	φ20×20 to φ22×50mm	85°C 2,000 hours +R	\bullet			Radial	160 to 450	33 to 470
		КМН	φ20×20 to φ22×50mm	105℃ 2,000 hours +R	ullet			Radial	160 to 450	33 to 470
		PAG	Low profile, for input filtering	105℃ 2,000 hours +R				Radial	200 to 450	18 to 560
	High Reliability	KLJ	Downsized, no sparks with DC overvoltage	105℃ 2,000 hours +R				Radial	200 & 400	4.7 to 330
		KLG	No sparks with DC overvoltage	105℃ 2,000 hours +R				Radial	200 & 400	22 to 330
ar		FL	Long life	105℃ 3,000 hours +R			\bullet	Radial	6.3 to 50	0.47 to 270
Miniature		GPA	125°C, downsized, low impedance	125°C 3,000 to 5,000 hours +R		\bullet	\bullet	Radial	25 to 50	470 to 6,800
Ē		GXE	125℃, downsize, low impedance	125°C 2,000 to 5,000 hours +R		ullet		Radial	10 to 450	4.7 to 4,700
		GXL	125℃ Long life	125°C 5,000/10,000 hours +R			ullet	Radial	10 to 50	100 to 4,700
		GHA (NEW!)	150°C	150°C 1,000 hours			ullet	Radial	10 to 35	68 to 3,300
		LBG	For airbag	105℃ 5,000 hours +R				Radial	25 & 35	1,000 to 11,000
		KZV (NEW!)	For PC motherboard (Ask Engineering Bulletin No756 in detail)	105℃ 2,000 hours +R				Radial	4	820 to 2.700
	Special	KZJ	For PC motherboard	105°C 2,000 hours +R		\bullet		Radial	6.3 to 16	470 to 3,300
	Application	KZG	For PC motherboard	105℃ 2,000 hours +R				Radial	6.3 to 16	470 to 3,300
		LLA	Low DC leakage, general	85°C 1,000 hours			\bullet	Radial	6.3 to 50	0.1 to 15,000
		РН	For photo flash	55℃ 5,000 times charging				Radial	300 & 330	_
		KMR	105°C, Snap-in terminal, super downsized	105℃ 2,000 hours +R	\bullet			Pin	160 to 450	100 to 3,900
	General Purpose	SMQ	Snap-in terminal, more downsized	85℃ 2,000 hours +R	\bullet			Pin	160 to 450	82 to 3,900
		KMQ	Snap-in terminal, more downsized	105℃ 2,000 hours +R	\bullet			Pin	35, 50, 160 to 450	68 to 33,000
		SMM	Snap-in terminal, downsized	85℃ 3,000 hours +R	\bullet			Pin	160 to 450	47 to 3,300
	1 dipose	KMS (NEW!)	Snap-in terminal, downsized	105℃ 3,000 hours +R	\bullet			Pin	160 to 450	82 to 3,300
		КММ	Snap-in terminal, downsized	105°C 2,000 to 3,000 hours +R	\bullet			Pin	160 to 450	39 to 3,300
		SMH	Snap-in terminal, general (Refer Engineering Bulletin No585 for 160 to 450V)	85℃ 2,000 hours +R	\bullet			Pin	6.3 to 100	820 to 100,000
Sized		КМН	Snap-in terminal, general (Refer Engineering Bulletin No584 for 160 to 450V)	105℃ 2,000 hours +R	\bullet			Pin	6.3 to 100	560 to 82,000
e Si	Low	SLM	15mm height	85℃ 2,000 hours +R				Pin	160 to 400	47 to 560
arge	Profile	KLM	15mm height	105℃ 2,000 hours +R				Pin	160 to 400	39 to 390
		LXM	Long life	105℃ 7,000 hours +R				Pin	160 to 450	47 to 2,200
		LXS (NEW!)	Snap-in terminal downsized	105℃ 5,000 hours +R	•			Pin	160 to 450	82 to 3,300
		LXQ	Long life, downsized	105℃ 5,000 hours +R				Pin	160 to 450	82 to 2,700
	High	LXG	Long life	105℃ 5,000 hours +R				Pin	10 to 100	390 to 47,000
	Reliability	CHA (Upgrade!)	No sparks with DC overvoltage, downsized	105°C 2,000 hours +R				Pin	200 to 450	56 to 1,200
		LXH	No sparks with DC overvoltage	105°C 3,000/5,000 hours +R				Pin	200 & 400	68 to 1,500
		RWE-LR	For air-conditioning (Ask Engineering Bulletin No768 in detail)	85°C 3,000 hours +R				Lug	250 to 450	330 to 2,200
	General	SME	Screw terminal, general	85°C 2,000 hours +R	•			Screw	10 to 250	560 to 680,000
	Purpose	КМН	Screw terminal, general	105°C 2,000 hours +R	•			Screw	10 to 400	180 to 680,000
эс		RWG	85°C, high ripple, downsized, long life	85°C 5,000 hours +R				Screw		1,500 to 18,000
Ty		RWF	High ripple, long life	85°C 5,000 hours +R				Screw	350 to 450	
Screw-mount Terminal Type		RWE	High ripple	85°C 2,000 hours +R	•		-	Screw	350 to 550	100 to 12,000
erm		RWY	High ripple, long life, low cost	85°C 5,000 hours +R	-		-	Screw	350 to 450	
nt T		RWL	High ripple, long life	85°C 20,000 hours +R			-	Screw		2,200 to 12,000
nou	For Inverter	FTP	Ellips can shape, high ripple	85°C 5,000 hours +R			-	Screw	63 to 450	270 to 21,000
u-M		LXA	Long life	105°C 2,000/5,000 hours +R			-	Screw	10 to 525	330 to 390,000
Scre			High ripple, long life	105°C 5,000 hours +R				Screw		2,200 to 15,000
		LWY	Low cost (Ask Engineering Bulletin No714 in detail)	105°C 5,000 hours +R			-	Screw	350 to 450	
		KW	Low impedance (Ask Engineering Bulletin in detail)	105°C 2,000 hours		•	-	Screw		1,000 to 100,000
				100 0 2,000 10013				OCIEW	1010100	1,000 10 100,000

: Promotional products

▲ : Some of range are solvent-proof.


CAT. No. E1001G

(1/2)

ALUMINUM ELECTROLYTIC CAPACITORS

♦SNAP-IN

NIPPON CHEMI-CON

Previous page

NIPPON CHEMI-CON

PRECAUTIONS AND GUIDELINES (Conductive Polymer)

The NPCAP[™] is a Conductive Polymer Solid Aluminum Capacitor that uses highly conductive polymer electrolytic material. Please read the following in order to get the most out of your NPCAP[™] capacitor.

For aluminum electrolytic capacitors, please refer to PRECAUTIONS AND GUIDELINES.

Designing Device Circuits

1 Types of Circuits Where NPCAP[™] Capacitors are Not to be Used

The leakage current in conductive polymer solid aluminum capacitors (hereafter called capacitors) may vary depending on thermal stresses during soldering. Avoid the use of capacitors in the following types of circuits:

- a) High-impedance circuits that are to sustain voltages.
- b) Coupling circuits
- c) Time constant circuits
- Because the capacitance varies depending on the environment the capacitors are used in, there is a possibility that the capacitor affects the time constant circuit where sensitivity to variation in capacitance is required.
- d) Other circuits that are significantly affected by leakage current

2 Circuit Design

Verify the following before designing the circuit:

- a) The electrical characteristics of the capacitor will vary depending on differences in temperature and frequency. Perform circuit design after verifying the scope of these factors.
- b) When connecting two or more capacitors in parallel, ensure that the design takes current balancing into account.
- c) When two or more capacitors are connected in series, variability in applied voltage may cause over-voltage conditions. Contact Nippon Chemi-Con before using capacitors connected in series.

3 Use in High Reliable and Critical Applications

Consult with Nippon Chemi-Con before using these capacitors in applications involving human life: Aviation/space equipment, Nuclear power equipment, Medical equipment and Automotive equipment, or in applications where capacitor failure could have a major impact on society.

4 Polarity

The NPCAPTM is a polarized solid aluminum electrolytic capacitor. Do not apply either reverse voltages or AC voltages to the polarized capacitors, using reversed polarity may cause a short circuit. Refer to the catalog, product specifications or capacitor body to confirm the polarity prior to use.

5 Operating Voltage

Do not apply DC voltages exceeding the full rated voltage. The peak voltage of superimposed AC voltages (ripple voltages) on DC voltages must not exceed the full rated voltage. While there are specifications for surge voltages exceeding the rated voltage, usage conditions apply, and continued operation for extended periods of time under such conditions cannot be guaranteed.

6 Ripple Current

Do not apply currents in excess of the rated ripple current. The superimposition of a large ripple current increases the rate of heating within the capacitor. This may reduce the service life of the capacitor or damage the capacitor.

7 Operating Temperature

Do not use the capacitor at high temperatures (temperatures exceeding the maximum temperature for the capacitor category). Use of the capacitor outside of the maximum temperature for the capacitor category may decrease the service life of the capacitor.

8 Charging and Discharging the Capacitor

Do not use the NPCAP[™] capacitor in circuits where the capacitor is repetitively charged and discharged rapidly. Repetitively charging and discharging the capacitor rapidly may reduce the capacitance or may cause damage due to internal heating. Use of a protective circuit to ensure reliability is recommended when rush currents exceed 20A.

9 Failures and Service Life

Based on the JIS C 5003 Standard, the failure rate for NPCAP[™] capacitors (with a 60% reliability standard) is as follows:

- * in case of the endurance of 2,000 hours at 105℃:
- 0.5%/1,000 hours (at an ambient temperature of 105°C at rated voltage)
- * in case of the endurance of 1,000 hours at 105°C or 1,000 hours at 125°C:

1.0%/1,000 hours (at an ambient temperature of 105°C at rated voltage)

a) Failure Modes

The main causes of failure are thermal stresses caused by the solder reflow process or thermal use environment, along with electrical stresses and mechanical stresses. The most common capacitor failure mode is the short circuit mode, where the following phenomenon may occur after shorting:

(1) If the pass-through current when the product is shorted is 1A or less, then the product becomes heated, but no effects are visible, even when the current is continuously carried. However, larger currents may cause substantial internal heating that causes the rubber seal to separate from the case, causing the release of an odorous gas.

(2) Some flammable materials are used in the capacitor. If an extremely large electric current flows through the capacitor after shorting, the shorted part may spark, and in a worstcase scenario, may ignite. Consequently, ensure safety by fully considering the design issues described below when using this capacitor in equipment where safety is a priority.

- Increase safety by using in conjunction with a protective circuit or protective equipment.
- Install measures such as redundant circuits so that the failure of a part of equipment will not cause unstable operation.
- b) Service Life

NPCAP[™] uses rubber as the sealing material, so the service life depends on the thermal deterioration of this rubber. Consequently, it is recommended to use the capacitor at a lower temperature than the maximum temperature for the capacitor category as much as possible.

10 Capacitor Insulation

Ensure electrical insulation between the capacitor case, negative electrode, positive electrode and circuit pattern.

11 Capacitor Usage Environment

Do not use/expose capacitors to the following conditions.

- a) Oil, water, salty water, take care to avoid storage in damp locations.
- b) Direct sunlight
- c) Toxic gases such as hydrogen, sulfide, sulfurous acids, nitrous acids, chlorine and chlorine compounds, bromine and bromine compounds, ammonia, etc.
- d) Ozone, ultraviolet rays and radiation.
- e) Severe vibration or mechanical shock conditions beyond the

limits advised in the product specification section of the catalog

12 Capacitor mounting

- a) For the surface mount capacitor, design the copper pads on the PC board in accordance with the catalog or the product specification
- b) For radial capacitors, design the terminal holes on the PC board to fit the terminal pitch of the capacitor.

Installing Capacitors

1 Installing

NIPPON

- a) Do not reuse capacitors already assembled in equipment that have been exposed to power.
- b) The capacitor may have self charge. If this happens, discharge the capacitor through a resistor of approximately 1kΩ before use.
- c) If capacitors are stored at a temperature of 35°C or more and more than 75%RH, the leakage current may increase. This may also occur if the capacitors are stored for a longer period than the period which is specified in the catalog or the product specification. In this case, they can be reformed by the voltage treatment through a resistor of approximately 1kΩ
- d) Verify the rated capacitance and voltage of the capacitors when installing.
- e) Verify the polarity of the capacitors.
- f) Do not use the capacitors if they have been dropped on the floor.
- g) Do not deform the case of the capacitors.
- h) Verify that the lead spacing of the capacitor fits the hole spacing in the PC board before installing the capacitors.
- i) Do not apply any mechanical force in excess of the limits prescribed in the catalog or the product specification of the capacitors. Avoid subjecting the capacitor to strong forces, as this may break the electrode terminals, bend or deform the capacitor, or damage the packaging, and may also cause short/open circuits, increased leakage current, or damage the appearance. Also, note the capacitors may be damaged by mechanical shocks caused by the vacuum/insertion head, component checker or centering operation of an automatic mounting or insertion machine.

2 Heat Resistance during Soldering

Ensure that the soldering conditions meet the specifications recommended by Nippon Chemi-Con. Note that the leakage current may increase due to thermal stresses that occur during soldering, etc. Note that increased leakage currents gradually decrease when voltage is applied.

a) Verify the following before using a soldering iron:

- That the soldering conditions (temperature and time) are within the ranges specified in the catalog or product specifications.
- . That the tip of the soldering iron does not come into contact with the capacitor itself.
- b) Verify the following when flow soldering:
 - · Do not dip the body of a capacitor into the solder bath only dip the terminals in. The soldering must be done on the reverse side of PC board.
 - · Soldering conditions (preheat, solder temperature and dipping time) should be within the limits prescribed in the catalog or the product specifications.
 - · Do not apply flux to any part of capacitors other than their terminals.
 - · Make sure the capacitors do not come into contact with any other components while soldering.
- c) Verify the following when reflow soldering:

- · Soldering conditions (preheat, solder temperature and soldering time) should be within the limits prescribed in the catalogs or the product specification.
- The heat level should be appropriate. (Note that the thermal stress on the capacitor varies depending on the type and position of the heater in the reflow oven, and the color and material of the capacitor.)
- Vapor phase soldering (VPS) is not used.
- · Except for the surface mount type, reflow soldering must not be used for the capacitors.
- d) Do not reuse a capacitor that has already been soldered to PC board and then removed. When using a new capacitor in the same location, remove the flux, etc. first, and then use a soldering iron to solder on the new capacitor in accordance with the specifications.
- e) Confirm before running into soldering that the capacitors are for reflow soldering.

3 Handling After Soldering

Do not apply any mechanical stress to the capacitor after soldering onto the PC board.

- a) Do not lean or twist the body of the capacitor after soldering the capacitors onto the PC board.
- b) Do not use the capacitors for lifting or carrying the assembly board.
- c) Do not hit or poke the capacitor after soldering to PC board. When stacking the assembly board, be careful that other components do not touch the aluminum electrolytic capacitors.
- d) Do not drop the assembled board.

4 Cleaning PC boards

- a) Do not wash capacitors by using the following cleaning agents. Solvent-proof capacitors are only suitable for washing using the cleaning conditions prescribed in the catalog or the product specification. In particular, ultrasonic cleaning will accelerate damage to capacitors.
 - · Halogenated solvents; cause capacitors to fail due to corrosion.
 - · Alkali system solvents; corrode (dissolve) an aluminum case.
 - · Petroleum system solvents; cause the rubber seal material to deteriorate.
 - Xylene; causes the rubber seal material to deteriorate.
 - · Acetone; erases the markings.
- b) Verify the following points when washing capacitors.
 - · Monitor conductivity, pH, specific gravity and the water content of cleaning agents. Contamination adversely affects these characteristics.
 - · Be sure not to expose the capacitors under solvent rich conditions or keep capacitors inside a closed container. In addition, please dry the solvent sufficiently on the PC board and the capacitor with an air knife (temperature should be less than the maximum rated category temperature of the capacitor) for 10 minutes. Aluminum electrolytic capacitors can be characteristically and catastrophically damaged by halogen ions, particularly by chlorine ions, though the degree of the damage mainly depends upon the characteristics of the electrolyte and rubber seal material. When halogen ions come into contact with the capacitors, the foil corrodes when a voltage is applied. This corrosion causes an extremely high leakage current which results venting and an open circuit.

If the new types of cleaning agents mentioned below are used, the following are recommended as cleaning conditions for some of new cleaning agents.

-Higher alcohol cleaning agents

Pine Alpha ST-100S (Arakawa Chemical)

NIPPON CHEMI-CON

Clean Through 750 H, 750K, 750L, and 710M (Kao) Technocare FRW-14 through 17 (Toshiba) Cleaning Conditions:

Using these cleaning agents, capacitors are capable of withstanding immersion or ultrasonic cleaning for 10 minutes at a maximum liquid temperature of 60°C. Find optimum condition for washing, rinsing, and drying. Be sure not to rub the marking off the capacitor which can be caused by contact with other components or the PC board. Note that shower cleaning adversely affects the markings on the sleeve.

-Non-Halogenated Solvent Cleaning

AK225AES (Asahi Glass)

Cleaning Conditions:

Ultrasonic or vapor cleaning for 5 minutes. However, from an environmental point of view, these types of solvent will be banned in near future. We would recommend not using them if at all possible.

-Isopropyl Alcohol (IPA)

IPA (Isopropyl Alcohol) is one of the most acceptable cleaning agents; it is necessary to maintain a flux content in the cleaning liquid at a maximum limit of 2 Wt.%.

5 Precautions for using adhesives and coating materials

- a) Do not use any adhesive and coating materials containing halogenated solvent.
- b) Verify the following before using adhesive and coating material.
 - Remove flux and dust left over between the rubber seal and the PC board before applying adhesive or coating materials to the capacitor.
 - Dry and remove any residual cleaning agents before applying adhesive and coating materials to the capacitors. Do not cover over the whole surface of the rubber seal with the adhesive or coating materials.
 - For permissible heat conditions for curing adhesives or coating materials, follow the instructions in the catalog or the product specification for the capacitors.
 - Covering over the whole surface of the capacitor rubber seal with resin may result in a hazardous condition because the inside pressure cannot be completely released. Also, a large amount of halogen ions in resins will cause the capacitors to fail because the halogen ions penetrate into the rubber seal and the inside of the capacitor.
 - Consider that some solvents in the adhesives and coating materials may make the capacitor surface matt or result in whitening.

6 Fumigation

In many cases when exporting or importing electronic devices, such as capacitors, wooden packaging is used. In order to control insects it may become necessary to fumigate the shipment. Precautions during "Fumigation" using halogenated chemical such as Methyl Bromide must be taken. Halogen gas can penetrate packaging materials such as cardboard boxes and vinyl bags. Penetration of the halogenated gas can cause corrosion of Electrolytic capacitors. Nippon Chemi-Con gives consideration to the packaging materials not to require the Fumigation. Verify whether the assembled PC board, products and capacitors themselves are subjected to Fumigation during their transportation or not.

The Operation of Devices

- a) Do not touch the capacitor terminals directly.
- b) Do not short-circuit the terminal of a capacitor by letting it come into contact with any conductive object. Also, do not spill electric-conductive liquid such as acid or alkaline solution over the capacitor.

- c) Do not use capacitors in circumstances where they would be subject to exposure to the following materials
 - Oil, water, salty water or damp location.
 - Direct sunlight.
 - Toxic gases such as hydrogen sulfide, sulfurous acid, nitrous acid, chlorine or its compounds, and ammonium.
 - Ozone, ultraviolet rays or radiation.
 - Severe vibration or mechanical shock conditions beyond the limits prescribed in the catalog or product specification.

Maintenance Inspection

- a) Make periodic inspections of capacitors that have been used in industrial applications. Before inspection, turnoff the power supply and carefully discharge the electricity in the capacitors. Verify the polarity when measuring the capacitors with a volt-ohm meter. Do not apply any mechanical stress to the terminals of the capacitors.
- b) The following items should be checked during the periodic inspections.
 - Significant damage in appearance
 - Electrical characteristics: leakage current, capacitance, tanδ and other characteristics prescribed in the catalog or product specification.
 - We recommend replacing the capacitors if the parts are out of specification.

Contingencies

- a) If gas has vented from the capacitor during use, there is a short circuit and burning, or the capacitor discharges an odor or smoke, turn off the main power supply to the equipment or unplug the power cord.
- b) If there is a problem with the capacitor or a fire breaks out, the capacitor may produce a burning gas or reactive gas from the outer resin, etc. If this happens, keep your hands and face away from the gas. If vented gas is inhaled or comes into contact with your eyes, flush your eyes immediately with water and/or gargle. If vented gas comes into contact with the skin, wash the affected area thoroughly with soap and water.

Storage

We recommend the following conditions for storage.

a) Store capacitors in a cool, dry place. Store at a temperature between 5 and 35°C, with a humidity of 75% or less.

(table-1)

<u> </u>		
	Befor the bag is opened	After the bag is opened
SMD	Within 3 years after manufacturing	Within 6 months after the bag is opend
Radial	Within 3 years after manufacturing	_

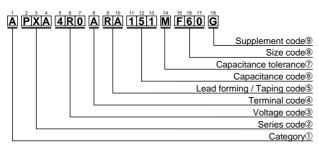
SMD products are sealed in a special laminated aluminum bag. Use all capacitors once the bag is opened. Return unused capacitors to the bag, and seal it with a zipper. Please refer to (Table -1) for storage conditions. Be sure to follow our recommendations for reflow soldering.

- b) Store the capacitors in a location free from direct contact with water, salt water, and oil.
- c) Store in a location where the capacitor is not exposed to toxic gas, such as hydrogen sulfide, sulfurous acid, nitrous acid, chlorine or chlorine compounds, bromine or other halogen gases, methyl bromide or other halogen compounds, ammonia, or similar.
- d) Store in a location where the capacitor is not exposed to ozone, ultraviolet radiation, or other radiation.
- e) It is recommended to store capacitors in their original packaging wherever possible.
- f) The JEDEC J-STD-020 (Rev. C) standard does not apply.

Disposal

Please consult a local specialist regarding the disposal of industrial waste when disposing of aluminum electrolytic capacitors.

Catalogs


Specifications in the catalogs may be subject to change without notice. For more details of precautions and guidelines for aluminum electrolytic capacitors, please refer to Engineering Bulletin No. 634A.

A guide to global code (Conductive polymer)

(Example : PXA series, 4V-150 μ F, ϕ 6.3 \times 5.7L)

Refer to the following table about global code for conductive polymer type

①Category

②Series code

Contonto	Code
Contents	1st
Polar	А

Series name		Code	
Series name	2nd	3rd	4th
PXA	Р	Х	А
PSA	Р	S	А
PS	Р	S	-

③Voltage code

Voltage	Code					
(V)	5th	6th	7th			
2.5	2	R	5			
4	4	R	0			
6.3	6	R	3			
10	1	0	0			
16	1	6	0			
20	2	0	0			
25	2	5	0			
35	3	5	0			

④Terminal code

Turne	Code
Туре	8th
SMD	A
Radial lead	E

⑤Lead forming code (Radial lead type)

Turne	Contonto	Code			
Туре	Contents	9th	10th		
Lead forming	Straight	L	L		
(Radial lead	CC(3.5mm)	С	3		
/Bulk)	CC(5.0mm)	С	5		
Taping (Radial lead)	Straight	т	D		

⑤Taping code (SMD)

Tumo	Toning contents	Reel dia.	Code		Application size	
Туре	Taping contents	(mm)	9th	10th	φD (mm)	
Taping	Reel for resuse	380	R	А	φD=4 to 10	
(SMD)	Reel for resuse	330	R	В	φD=8 to 10	

Refer product guide for taping specifications.

⑥Capacitance code

Cap.		Code	
(µF)	11th	12th	13th
10	1	0	0
22	2	2	0
27	2	7	0
33	3	3	0
39	3	9	0
47	4	7	0
56	5	6	0
68	6	8	0
82	8	2	0
100	1	0	1
120	1	2 5	1
150	1	5	1
180	1	8	1
220	2	2	1
270	2	7	1
330	3	3	1
390	3	9	1
470	4	7	1
560	5	6	1
680	6	8	1
820	8	2	1
1,000	1	0	2
1,200	1	2	2
1,500	1	5	2

⑦Capacitance tolerance

Tol.	Code
(%)	14th
±20	M

Size code (Radial lead type)

φD	Code		Co	de
φυ	15th	L	16th	17th
6.3	F	8	0	8
8	Н	10.5	A	5
10	J	11.5	В	5
		12.5	C	5

®Size code (SMD)

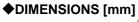
øD	Code		
φD	15th		
5	Е		
6.3	F		
8	Н		
10	J		

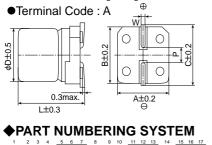
L	Code			
L	16th	17th		
5.2	5	5		
5.7	6	0		
6.7	7	0		
7.7	8	0		
10	А	0		
12	С	0		
12.2	С	0		

Supplement code

Classification	Code
Туре	18th
SMD	G
Radial lead	S

* Refer to the appendix (Global code) for codes does not listed.


- •Super low ESR, impedance and high heat resistance have been obtained by using conductive polymer as electrolyte.
- ●Rated voltage range : 2.5 to 6.3Vdc, Capacitance range : 220 to 1,000µF
- ●Case size range : ϕ 6.3×5.8L to ϕ 8×7.7L
- •Suitable for DC-DC converters, voltage regulators and decoupling applications used to computer motherboards etc.
- ●RoHS Compliant


\$SPECIFICATIONS

Items	Characteristics						
Category Temperature Range	−55 to +105℃						
Rated Voltage Range	2.5 to 6.3V _{dc}						
Capacitance Tolerance	±20% (M)		(at 20°C, 120Hz)				
Surge Voltage	Rated voltage×1.15V		(at 105°C)				
Leakage Current	I=0.3CV						
	I : Max. leakage current	(µA), C : Nominal capacitance (µF), V	: Rated voltage (Vdc) (at 20°C after 2 minutes)				
Dissipation Factor (tanô)	0.12 max.		(at 20°C, 120Hz)				
Low Temperature Characteristics (Max. Impedance Ratio)	Z(−25°C)/Z(+20°C)≦1.15 Z(−55°C)/Z(+20°C)≦1.25						
· · /	. , . ,		(at 100kHz)				
Endurance	The following specification at 105°C.	ons shall be satisfied when the capaci	tors are restored to 20°C after the rated voltage is applied for 2,000 hours				
	Appearance	No significant damage					
	Capacitance change	≦±20% of the initial value					
	DF (tanδ)	\leq 150% of the initial specified value					
	ESR	≦150% of the initial specified value					
	Leakage current	≦The initial specified value					
Bias Humidity	The following specificati 60°C, 90 to 95% RH for		tors are restored to 20°C after subjecting them to the DC rated voltage at				
	Appearance	No significant damage					
	Capacitance change	≦±20% of the initial value					
	DF (tanδ)	≦150% of the initial specified value					
	ESR	≦150% of the initial specified value					
	Leakage current	≦The initial specified value					
Surge Voltage	The capacitors shall be subjected to 1,000 cycles each consisting of charge with the surge voltage specified at 105°C for 30 second						
	through a protective resistor ($R=1k\Omega$) and discharge for 5 minutes 30 seconds.						
	Appearance	No significant damage					
	Capacitance change	≦±20% of the initial value					
	DF (tanδ)	≦150% of the initial specified value					
	ESR	≦150% of the initial specified value					
	Leakage current	≦The initial specified value					
Failure Rate	1% per 1,000 hours max	kimum (Confidence level 60% at 105℃					

*Note : If any doubt arises, measure the leakage current after following voltage treatment.

Voltage treatment : DC rated voltage are applied to the capacitors for 120 minutes at 105°C.

Size Code	φD	L	Α	В	С	W	Р
F61	6.3	5.8	6.6	6.6	7.2	0.5 to 0.8	1.9
F80	6.3	7.7	6.6	6.6	7.2	0.5 to 0.8	1.9
H70	8	6.7	8.3	8.3	9.0	0.7 to 1.1	3.1
H80	8	7.7	8.3	8.3	9.0	0.7 to 1.1	3.1

EX) 2.5	V390µF
	Econ
	F69A ∖

MARKING

VPART NUMBERING STSTEM
A PXF A RA A A G
$\dot{\tau}$
Supplement code
Size code
Capacitance tolerance code
Capacitance code (ex. 330µF:331, 1,000µF:102)
Taping code
Terminal code
Voltage code (ex. 2.5V:2R5, 6.3V:6R3)
Series code
Category

Please refer to "A guide to global code (conductive polymer type)"

♦STANDARD RATINGS

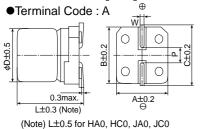
WV (Vdc)	Сар (µF)	Size code	ESR (mΩmax/20℃, 100kHz)	Rated ripple current (mArms/100k to 300kHz) -55 to +105℃	Part No.
	390	F61	10	3,900	APXF2R5ARA391MF61G
	470	F80	9	4,200	APXF2R5ARA471MF80G
2.5	560	F80	9	4,200	APXF2R5ARA561MF80G
2.5	560	H70	9	4,500	APXF2R5ARA561MH70G
	680	H70	9	4,500	APXF2R5ARA681MH70G
	1,000	H80	9	4,500	APXF2R5ARA102MH80G
	330	F61	10	3,900	APXF4R0ARA331MF61G
	390	F80	9	4,200	APXF4R0ARA391MF80G
4	470	H70	9	4,500	APXF4R0ARA471MH70G
	560	H70	9	4,500	APXF4R0ARA561MH70G
	680	H80	9	4,500	APXF4R0ARA681MH80G
	220	F61	10	3,900	APXF6R3ARA221MF61G
	270	F80	9	4,200	APXF6R3ARA271MF80G
	330	F80	9	4,200	APXF6R3ARA331MF80G
6.3	330	H70	9	4,500	APXF6R3ARA331MH70G
	390	H70	9	4,500	APXF6R3ARA391MH70G
	470	H80	9	4,500	APXF6R3ARA471MH80G
	560	H80	9	4,500	APXF6R3ARA561MH80G

•Super low ESR, impedance and high heat resistance have been obtained by using conductive polymer as electrolyte. (ESR and rated ripple current values are improved from PXA series.)

- ●Rated voltage range : 2.5 to 16Vdc, Capacitance range : 33 to 2,700µF
- •Case size range : ϕ 5×5.8L to ϕ 10×12.2L

•Suitable for DC-DC converters, voltage regulators and decoupling applications used to computer motherboards etc.

RoHS Compliant

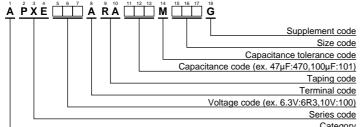

♦SPECIFICATIONS

Items	Characteristics									
Category Temperature Range	−55 to +105℃									
Rated Voltage Range	2.5 to 16V _{dc}	2.5 to 16V _{dc}								
Capacitance Tolerance	±20% (M)		(at 20°C, 120Hz)							
Surge Voltage	Rated voltage×1.15V		(at 105℃)							
Leakage Current	I=0.2CV (max.)									
	I : Max. leakage current	(µA), C : Nominal capacitance (µF), V	: Rated voltage (Vdc) (at 20°C after 2 minutes)							
Dissipation Factor (tan∂)	0.12 max.		(at 20°C, 120Hz)							
Low Temperature Characteristics	Z(−25℃)/Z(+20℃)≦1.15	5								
(Max. Impedance Ratio)	Z(−55°C)/Z(+20°C)≦1.25	5	(at 100kHz)							
Endurance	The following specificati	one shall be satisfied when the capaci	tors are restored to 20°C after the rated voltage is applied for 2,000 hours							
Endurance	at 105°C.	ons shall be satisfied when the capaci								
	Appearance	No significant damage								
	Capacitance change	≦±20% of the initial value								
	DF (tanô)	≦150% of the initial specified value								
	ESR	≦150% of the initial specified value								
	Leakage current	≦The initial specified value								
Bias Humidity	The following specificati	ons shall be satisfied when the capaci	tors are restored to 20°C after subjecting them to the DC rated voltage at							
	60℃, 90 to 95% RH for	1,000 hours.								
	Appearance	No significant damage								
	Capacitance change	≦±20% of the initial value								
	DF (tan∂)	≦150% of the initial specified value								
	ESR	≦150% of the initial specified value								
	Leakage current	≦The initial specified value								
Surge Voltage	The capacitors shall be	subjected to 1,000 cycles each consi	sting of charge with the surge voltage specified at 105°C for 30 seconds							
	through a protective resistor(R=1k Ω) and discharge for 5 minutes 30 seconds.									
	Appearance	No significant damage								
	Capacitance change	≦±20% of the initial value								
	DF (tan∂)	≦150% of the initial specified value								
	ESR	≦150% of the initial specified value								
	Leakage current	≦The initial specified value								
Failure Rate	1% per 1,000 hours max	kimum (Confidence level 60% at 105°C								

*Note : If any doubt arises, measure the leakage current after following voltage treatment.

Voltage treatment : DC rated voltage are applied to the capacitors for 120 minutes at 105°C.

◆DIMENSIONS [mm]



PART NUMBERING SYSTEM

	_		_				
Size Code	φD	L	Α	В	С	w	Р
E61	5	5.8	5.3	5.3	5.9	0.5 to 0.8	1.4
F61	6.3	5.8	6.6	6.6	7.2	0.5 to 0.8	1.9
F80	6.3	7.7	6.6	6.6	7.2	0.5 to 0.8	1.9
H70	8	6.7	8.3	8.3	9.0	0.7 to 1.1	3.1
H80	8	7.7	8.3	8.3	9.0	0.7 to 1.1	3.1
HA0	8	10.0	8.3	8.3	9.0	0.7 to 1.1	3.1
HC0	8	12.0	8.3	8.3	9.0	0.7 to 1.1	3.1
J80	10	7.7	10.3	10.3	11.0	0.7 to 1.1	4.5
JA0	10	10.0	10.3	10.3	11.0	0.7 to 1.1	4.5
JC0	10	12.2	10.3	10.3	11.0	0.7 to 1.1	4.5

Category Please refer to "A guide to global code (conductive polymer type)"

♦STANDARD RATINGS

WV (Vdc)	Сар (µF)	Size code	ESR (mΩmax/20°C, 100kHz)	Rated ripple current (mArms/105°C, 100k to 300kHz)	Part No.
	180	E61	21	2,670	APXE2R5ARA181ME61G
	390	F61	15	3,160	APXE2R5ARA391MF61G
	470	F80	13	3,600	APXE2R5ARA471MF80G
	560	F80	13	3,600	APXE2R5ARA561MF80G
	560	H70	13	4,100	APXE2R5ARA561MH70G
	680	H70	13	4,100	APXE2RA5RA681MH70G
	820	H80	12	4,260	APXE2R5ARA821MH80G
2.5	820	HC0	9	5,400	APXE2R5ARA821MHC0G
	1,000	H80	12	4,260	APXE2R5ARA102MH80G
	1,500	HA0	10	5,220	APXE2R5ARA152MHA0G
	1,500	HC0	9	5,400	APXE2R5ARA152MHC0G
	1,200	J80	13	4,450	APXE2R5ARA122MJ80G
	2,200	JA0	10	5,500	APXE2R5ARA222MJA0G
	2,200	JC0	9	5,600	APXE2R5ARA272MJC0G
	100	E61	22	2,610	APXE4R0ARA101ME61G
	150	E61	22	2,610	APXE4R0ARA101ME81G
	270	F61			
			15	3,160	APXE4R0ARA271MF61G
	330	F61	15	3,160	APXE4R0ARA331MF61G
	390	F80	14	3,470	APXE4R0ARA391MF80G
	470	H70	14	3,950	APXE4R0ARA471MH70G
	560	H70	14	3,950	APXE4R0ARA561MH70G
4	680	H80	13	3,950	APXE4R0ARA681MH80G
	1,000	HA0	10	5,220	APXE4R0ARA102MHA0G
	1,000	J80	14	4,300	APXE4R0ARA102MJ80G
	1,200	HC0	9	5,400	APXE4R0ARA122MHC0G
	1,200	JA0	10	5,500	APXE4R0ARA122MJA0G
	1,500	JA0	10	5,500	APXE4R0ARA152MJA0G
	1,800	JA0	10	5,500	APXE4R0ARA182MJA0G
	1,800	JC0	9	5,600	APXE4R0ARA182MJC0G
	100	E61	24	2,500	APXE6R3ARA101ME61G
	120	E61	24	2,500	APXE6R3ARA121ME61G
	220	F61	15	3,160	APXE6R3ARA221MF61G
	270	F80	14	3,470	APXE6R3ARA271MF80G
	330	F80	14	3,470	APXE6R3ARA331MF80G
	330	H70	14	3,950	APXE6R3ARA331MH70G
	390	H70	14	3,950	APXE6R3ARA391MH70G
6.3	470	H80	13	3,950	APXE6R3ARA471MH80G
	820	HA0	12	4,770	APXE6R3ARA821MHA0G
	820	HC0	10	5,150	APXE6R3ARA821MHC0G
	820	J80	14	4,300	APXE6R3ARA821MJ80G
	1,200	JA0	12	5,025	APXE6R3ARA122MJA0G
	1,500	JAO	12	5,025	APXE6R3ARA152MJA0G
	1,500	JC0	10	5,500	APXE6R3ARA152MJC0G
	47	E61	28	2,310	APXE100ARA470ME61G
	56	E61	28		
				2,310	APXE100ARA560ME61G
	68	E61	28	2,310	APXE100ARA680ME61G
	120	F61	25	2,530	APXE100ARA121MF61G
40	150	F80	21	2,880	APXE100ARA151MF80G
10	220	H70	21	3,220	APXE100ARA221MH70G
	270	H70	21	3,220	APXE100ARA271MH70G
	330	H80	19	3,390	APXE100ARA331MH80G
	390	HA0	17	4,000	APXE100ARA391MHA0G
	470	J80	19	3,800	APXE100ARA471MJ80G
	680	JA0	13	4,820	APXE100ARA681MJA0G
	33	E61	35	2,070	APXE160ARA330ME61G
	39	E61	35	2,070	APXE160ARA390ME61G
	68	F61	28	2,390	APXE160ARA680MF61G
	82	F80	24	2,700	APXE160ARA820MF80G
	100	F80	24	2,700	APXE160ARA101MF80G
40	100	H70	24	3,010	APXE160ARA101MH70G
16	120	H70	24	3,010	APXE160ARA121MH70G
	150	H80	22	3,150	APXE160ARA151MH80G
	180	HA0	18	3,890	APXE160ARA181MHA0G
	220	HAO	18	3,890	APXE160ARA221MHA0G
	220	J80	22	3,450	APXE160ARA221MI1A0G
	330	JA0	16	4,350	APXE160ARA331MJA0G
	330	JAU	01	4,300	AF AE 100ARA33 HVIJAUG

PXF

PXA

Lower ESR

Upgrade! **NPCAP[™]** Series

- •Super low ESR, impedance and high heat resistance have been obtained by using conductive polymer as electrolyte
- ●Rated voltage range : 2.5 to 25Vdc, case size range : ¢4×5.2L to ¢10×12.2L (Case code F45 was newly added)
- •Suitable for DC-DC converters, voltage regulators and decoupling applications used to computer motherboards etc.

RoHS Compliant

♦SPECIFICATIONS

Items		Ch	aracteristics		
Category Temperature Range	−55 to +105℃	−55 to +105℃			
Rated Voltage Range	2.5 to 25V _{dc}				
Capacitance Tolerance	±20% (M)		(at 20°C, 120Hz)		
Surge Voltage	Rated voltage(V)×1.15	(Rated voltage 2.5 to 20Vdc, 25Vdc) / R	tated voltage(V)×1.00 (Rated voltage 23Vdc) (at 105℃)		
Leakage Current	Shall not exceed values	shown in STANDARD RATINGS.	(at 20°C after 2 minutes)		
Dissipation Factor (tan∂)	0.12 max.		(at 20°C, 120Hz)		
Low Temperature Characteristics	Z(−25°C)/Z(+20°C)≦1.1	5			
(Max. Impedance Ratio)	Z(−55°C)/Z(+20°C)≦1.25	5	(at 100kHz)		
Endurance	The following specification	ons shall be satisfied when the capacit	fors are restored to 20°C after the rated voltage is applied for 2,000 hours		
	(F45 : 1,000 hours) at 1	05°C.			
	Appearance	No significant damage			
	Capacitance change	≦±20% of the initial value			
	DF (tanð)	≦150% of the initial specified value			
	ESR	≦150% of the initial specified value			
	Leakage current	≦The initial specified value			
Bias Humidity	The following specificati	ons shall be satisfied when the capaci	tors are restored to 20°C after subjecting them to the DC rated voltage at		
	60℃, 90 to 95% RH for 2	1,000 hours.			
	Appearance	No significant damage			
	Capacitance change	≦±20% of the initial value			
	DF (tan∂)	≦150% of the initial specified value			
	ESR	≦150% of the initial specified value			
	Leakage current	≦The initial specified value			
Surge Voltage			sting of charge with the surge voltage specified at 105°C for 30 seconds		
	through a protective resistor($R=1k\Omega$) and discharge for 5 minutes 30 seconds.				
	Appearance	No significant damage			
	Capacitance change	≦±20% of the initial value			
	DF (tanδ)	≦150% of the initial specified value			
	ESR	≦150% of the initial specified value			
	Leakage current	≦The initial specified value			
Failure Rate	1% per 1,000 hours max	kimum (Confidence level 60% at 105℃			

*Note : If any doubt arises, measure the leakage current after following voltage treatment.

Voltage treatment : DC rated voltage are applied to the capacitors for 120 minutes at 105℃.

Size code

D55

E60

F45

F55

F60

H70

J80

HC0

JC0

φD L

4

5

6.3

6.3 5.2

6.3

8 6.7 8.3

10

8

Α В С

6.6 6.6

5.2 5.3

5.2 4.3 4.3 5.1 0.5 to 0.8

4.4 6.6 6.6 7.2 0.5 to 0.8

5.7 6.6 6.6 7.2 0.5 to 0.8

12.0 8.3 8.3 9.0 0.7 to 1.1

10 12.2 10.3 10.3 11.0 0.7 to 1.1 4.5

5.3 5.9 0.5 to 0.8

8.3 9.0 0.7 to 1.1

7.7 10.3 10.3 11.0 0.7 to 1.1 4.5

7.2 0.5 to 0.8

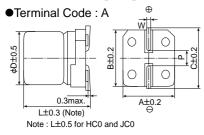
w

Р

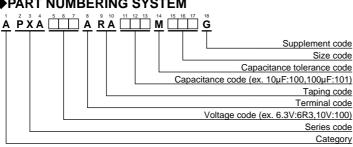
1.0

1.4

1.9


19

1.9


3.1

3.1

DIMENSIONS [mm]

PART NUMBERING SYSTEM

<u>Category</u> Please refer to "A guide to global code (conductive polymer type)"

♦STANDARD RATINGS

WV (Vdc)	Cap (μF)	Size code	Leakage current (µAmax/ after 2 min.)	ESR (mΩmax/ 20℃, 100kHz)	Rated ripple current (mArms/100k to 300kHz) -55 to +105°C	Part No.	WV (Vdc)	Cap (µF)	Size code	Leakage current (µAmax/ after 2 min.)	ESR (mΩmax/ 20℃, 100kHz)	Rated ripple current (mArms/100k to 300kHz) -55 to +105°C	Part No.
	220	F55	110	25	2,500	APXA2R5ARA221MF55G		4.7	D55	24	240	670	APXA100ARA4R7MD55G
	220	F60	110	25	2,500	APXA2R5ARA221MF60G		6.8	D55	34	240	670	APXA100ARA6R8MD55G
25	560	H70	280	23	3,100	APXA2R5ARA561MH70G		10	D55	50	220	700	APXA100ARA100MD55G
2.5	680	HC0	340	12	4,770	APXA2R5ARA681MHC0G		15	D55	75	200	740	APXA100ARA150MD55G
	1,000	J80	500	19	4,240	APXA2R5ARA102MJ80G		33	E60	66	40	1,270	APXA100ARA330ME60G
	1,500	JC0	750	10	5,500	APXA2R5ARA152MJC0G		47	E60	94	40	1,270	APXA100ARA470ME60G
	33	D55	66	200	740	APXA4R0ARA330MD55G		47	F45	235	41	1,560	APXA100ARA470MF45G
	100	F55	80	26	2,450	APXA4R0ARA101MF55G		47	F60	94	31	2,250	APXA100ARA470MF60G
	100	F60	80	26	2,450	APXA4R0ARA101MF60G	10	56	F55	112	31	2,250	APXA100ARA560MF55G
	120	F45	240	38	1,710	APXA4R0ARA121MF45G	10	56	F60	112	31	2,250	APXA100ARA560MF60G
	150	E60	120	30	1,490	APXA4R0ARA151ME60G		120	H70	240	27	2,800	APXA100ARA121MH70G
	150	F55	120	26	2,450	APXA4R0ARA151MF55G		150	H70	300	27	2,800	APXA100ARA151MH70G
4	150	F60	120	26	2,450	APXA4R0ARA151MF60G		270	J80	540	24	3,770	APXA100ARA271MJ80G
4	220	H70	176	25	3,020	APXA4R0ARA221MH70G		270	HC0	540	14	4,420	APXA100ARA271MHC0G
	330	H70	264	25	3,020	APXA4R0ARA331MH70G		330	J80	660	24	3,770	APXA100ARA331MJ80G
	470	J80	376	20	4,130	APXA4R0ARA471MJ80G		330	HC0	660	14	4,420	APXA100ARA331MHC0G
	560	HC0	448	12	4,770	APXA4R0ARA561MHC0G		470	JC0	940	12	5,300	APXA100ARA471MJC0G
	680	J80	544	20	4,130	APXA4R0ARA681MJ80G		560	JC0	1,120	12	5,300	APXA100ARA561MJC0G
	820	JC0	656	10	5,500	APXA4R0ARA821MJC0G		3.3	D55	26	260	660	APXA160ARA3R3MD55G
	1,200	JC0	960	10	5,500	APXA4R0ARA122MJC0G		22	E60	70	45	1,210	APXA160ARA220ME60G
	22	D55	69	200	740	APXA6R3ARA220MD55G		22	F45	176	45	1,490	APXA160ARA220MF45G
	47	E60	59	35	1,380	APXA6R3ARA470ME60G		33	F60	106	37	2,050	APXA160ARA330MF60G
	68	F60	86	27	2,400	APXA6R3ARA680MF60G		39	F55	125	37	2,050	APXA160ARA390MF55G
	82	F45	267	40	1,670	APXA6R3ARA820MF45G	16	39	F60	125	37	2,050	APXA160ARA390MF60G
	82	F55	103	27	2,400	APXA6R3ARA820MF55G	10	82	H70	262	30	2,700	APXA160ARA820MH70G
	82	F60	103	27	2,400	APXA6R3ARA820MF60G		150	J80	480	26	3,430	APXA160ARA151MJ80G
	100	F45	315	40	1,670	APXA6R3ARA101MF45G		180	J80	576	26	3,430	APXA160ARA181MJ80G
	100	E60	126	35	1,380	APXA6R3ARA101ME60G		180	HC0	576	16	4,360	APXA160ARA181MHC0G
	100	F55	126	27	2,400	APXA6R3ARA101MF55G		220	JC0	704	14	5,050	APXA160ARA221MJC0G
6.3	100	F60	126	27	2,400	APXA6R3ARA101MF60G		330	JC0	1,056	14	5,050	APXA160ARA331MJC0G
	120	F60	151	27	2,400	APXA6R3ARA121MF60G		15	F45	150	57	1,300	APXA200ARA150MF45G
	150	H70	189	25	3,020	APXA6R3ARA151MH70G		22	F55	88	50	1,650	APXA200ARA220MF55G
	220	H70	277	25	3,020	APXA6R3ARA221MH70G	20	22	F60	88	50	1,650	APXA200ARA220MF60G
	330	J80	416	20	4,130	APXA6R3ARA331MJ80G	20	39	H70	156	45	2,000	APXA200ARA390MH70G
	390	HC0	491	12	4,770	APXA6R3ARA391MHC0G		47	H70	188	45	2,000	APXA200ARA470MH70G
	470	J80	592	20	4,130	APXA6R3ARA471MJ80G		82	J80	328	40	2,500	APXA200ARA820MJ80G
	470	HC0	592	12	4,770	APXA6R3ARA471MHC0G	23	15	F45	172	57	1,300	APXA230ARA150MF45G
	680	JC0	857	10	5,500	APXA6R3ARA681MJC0G		10	F60	125	65	1,500	APXA250ARA100MF60G
	820	JC0	1,033	10	5,500	APXA6R3ARA821MJC0G	25	22	H70	275	50	1,800	APXA250ARA220MH70G
								39	J80	488	45	2,100	APXA250ARA390MJ80G

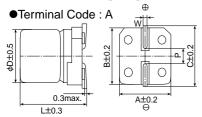
NPCAP[™]-PXH Series

 Super low ESR, impedance and high heat resistance have been obtained by using conductive polymer as electrolyte.

- •Suitable for DC-DC converters, voltage regulators and decoupling applications.
- ●Endurance : 125°C 1,000 hours
- ●Rated voltage range : 2.5 to 20Vdc, Capacitance range : 22 to 1,000µF
- •Case size range : ϕ 6.3×5.7L to ϕ 10×7.7L

•RoHS Compliant

PXH Higher temperature PXA

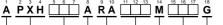

SPECIFICATIONS

Items		Ch	aracteristics			
Category Temperature Range	–55 to +125℃	–55 to +125℃				
Rated Voltage Range	2.5 to 20V _{dc}					
Capacitance Tolerance	±20% (M)		(at 20℃, 120Hz)			
Surge Voltage	Rated voltage(V)×1.15		(at 105℃)			
Leakage Current	Shall not exceed value s	shown in STANDARD RATINGS.	(at 20°C after 2 minutes)			
Dissipation Factor (tan∂)	0.12 max.		(at 20°C, 120Hz)			
Low Temperature Characteristics (Max. Impedance Ratio)	Z(−25°C)/Z(+20°C)≦1.15 Z(−55°C)/Z(+20°C)≦1.25	Z(−25°C)/Z(+20°C)≦1.15				
Endurance	• •	ons shall be satisfied when the capacit	tors are restored to 20°C after the rated voltage is applied for 1,000 hours			
	at 125℃.					
	Appearance	No significant damage				
	Capacitance change	≦±20% of the initial value				
	DF (tan∂)	≦200% of the initial specified value				
	ESR	≦200% of the initial specified value				
	Leakage current	≦The initial specified value				
Bias Humidity	The following specificati	ons shall be satisfied when the capaci	tors are restored to 20°C after subjecting them to the DC rated voltage at			
	60°C, 90 to 95% RH for 2	1,000 hours.				
	Appearance	No significant damage				
	Capacitance change	≦±20% of the initial value				
	DF (tan∂)	≦150% of the initial specified value				
	ESR	≦150% of the initial specified value				
	Leakage current	≦The initial specified value				
Surge Voltage	The capacitors shall be	subjected to 1,000 cycles each consi	sting of charge with the surge voltage specified at 105° C for 30 seconds			
	through a protective res	istor(R=1k Ω) and discharge for 5 min	utes 30 seconds.			
	Appearance	No significant damage				
	Capacitance change	≦±20% of the initial value				
	DF (tanδ)	≦150% of the initial specified value				
	ESR	≦150% of the initial specified value				
	Leakage current	≦The initial specified value				
Failure Rate	1% per 1,000 hours max	kimum (Confidence level 60%)				
	• • •	. /				

*Note : If any doubt arises, measure the leakage current after following voltage treatment.

Voltage treatment : DC rated voltage are applied to the capacitors for 120 minutes at 125°C.

DIMENSIONS [mm]



Size code	φD	L	Α	В	С	W	Р
F60	6.3	5.7	6.6	6.6	7.2	0.5 to 0.8	1.9
H70	8	6.7	8.3	8.3	9.0	0.7 to 1.1	3.1
J80	10	7.7	10.3	10.3	11.0	0.7 to 1.1	4.5

♦PART NUMBERING SYSTEM

Please refer to "A guide to global code (conductive polymer type)"

♦STANDARD RATINGS

WV(Vdc)	Cap(µF)	Size code	Leakage current	ESR		ble current k to 300kHz)	Part No.
, ,	,		(µAmax/after 2min.)	(mΩmax/20℃, 100kHz)	-55℃ to +105℃	+105℃ to +125℃	
	220	F60	110	35	2,500	770	APXH2R5ARA221MF60G
2.5	560	H70	280	30	3,100	960	APXH2R5ARA561MH70G
	1,000	J80	500	25	3,700	1,100	APXH2R5ARA102MJ80G
	150	F60	120	35	2,450	770	APXH4R0ARA151MF60G
4	220	H70	176	30	3,020	960	APXH4R0ARA221MH70G
	680	J80	544	25	3,700	1,100	APXH4R0ARA681MJ80G
	82	F60	103	40	2,400	720	APXH6R3ARA820MF60G
	100	F60	126	40	2,400	720	APXH6R3ARA101MF60G
6.3	150	H70	189	30	3,020	960	APXH6R3ARA151MH70G
	220	H70	277	30	3,020	960	APXH6R3ARA221MH70G
	470	J80	592	25	3,700	1,100	APXH6R3ARA471MJ80G
	56	F60	112	45	2,250	680	APXH100ARA560MF60G
10	120	H70	240	35	2,800	880	APXH100ARA121MH70G
10	150	H70	300	35	2,800	880	APXH100ARA151MH70G
	330	J80	660	30	3,700	1,010	APXH100ARA331MJ80G
	39	F60	125	50	2,050	650	APXH160ARA390MF60G
16	82	H70	262	40	2,700	830	APXH160ARA820MH70G
10	150	J80	480	35	3,020	930	APXH160ARA151MJ80G
	180	J80	576	35	3,020	930	APXH160ARA181MJ80G
	22	F60	88	60	1,650	590	APXH200ARA220MF60G
20	47	H70	188	45	2,000	780	APXH200ARA470MH70G
	82	J80	328	45	2,400	820	APXH200ARA820MJ80G

CONDUCTIVE POLYMER ALUMINUM SOLID CAPACITORS

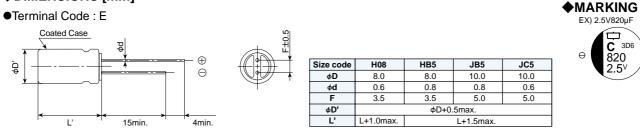
PSC

PSA

Low profile Lower ESR

- •Super low ESR, high ripple current capability
- •Lower profile than PSA (ϕ 8×8L to ϕ 10×12.5L)
- •Rated voltage range : 2.5 to 16Vdc
- •Nominal capacitance range : 270 to 2,700µF
- ●Endurance : 2,000 hours at 105℃
- •Suitable for DC-DC converters, voltage regulators and decoupling applications
- for computer motherboards

RoHS Compliant

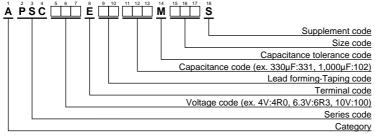

♦SPECIFICATIONS

Category Temperature Range -55 to +105°C Rated Voltage Range 2.5 to 16Vdc Capacitance Tolerance ±20% (M) Surge Voltage Rated voltage(Leakage Current I=0.2CV or 500 *Note Where I I leat	μA, whiche	ever is greater. ht (μΑ), C : Nominal capacitance (μF), V	(at 20°C, 120Hz) (at 105°C)		
Capacitance Tolerance ±20% (M) Surge Voltage Rated voltage(Leakage Current I=0.2CV or 500	μA, whiche	5			
Surge Voltage Rated voltage(Leakage Current I=0.2CV or 500	μA, whiche	5			
Leakage Current I=0.2CV or 500	μA, whiche	5	(at 105℃)		
	• •	5			
*Note Whore Liles	kage currer	nt (µA), C : Nominal capacitance (µF), V			
Wilele, I. Lea		(p.), e : : : : : : : : : : : : : : : : : :	/: Rated voltage (Vdc) (at 20°C after 2 minutes)		
Dissipation Factor (tanδ) 0.10 max.			(at 20°C, 120Hz)		
Low Temperature Z(-25°C)/Z(+20)°C)≦1.15				
Characteristics Z(-55°C)/Z(+20)℃)≦1.25				
(Max.Impedance Ratio)			(at 100kHz)		
Endurance The following s	pecification	ns shall be satisfied when the capacitors	s are restored to 20°C after the rated voltage is applied for 2,000 hours		
at 105°C.					
Appearance		No significant damage			
Capacitance c	nange	≦±20% of the initial value			
D.F. (tanδ)		≦150% of the initial specified value			
ESR		≦150% of the initial specified value			
Leakage curre	nt	≦The initial specified value			
Bias Humidity Test The following s 90 to 95% RH	•	•	ors are restored to 20℃ after subjecting them to DC voltage at 60℃,		
Appearance		No significant damage			
Capacitance c	hange	≦±20% of the initial value			
D.F. (tanδ)		≤150% of the initial specified value			
ESR		≦150% of the initial specified value			
Leakage curre	nt	≦The initial specified value			
, , , , , , , , , , , , , , , , , , ,		ubjected to 1,000 cycles each consistir	ng of charge with the surge voltage specified at 105°C for 30 seconds		
	through a protective resistor ($R=1k\Omega$) and discharge for 5 minutes 30 seconds.				
Appearance		No significant damage			
Capacitance c		≦±20% of the initial value			
$D.F. (tan \delta)$	5	≦150% of the initial specified value			
ESR		≦150% of the initial specified value			
Leakage curre		≦The initial specified value			
		mum (Confidence level 60% at 105°C)	1		

*Note : If any doubt arises, measure the leakage current after the following voltage treatment.

Voltage treatment : DC rated voltage is applied to the capacitors for 60 minutes at 105°C.

DIMENSIONS [mm]



 \oplus

♦PART NUMBERING SYSTEM

Please refer to "A guide to global code (conductive polymer type)"

♦STANDARD RATINGS

WV(Vdc)	Cap(µF)	Case size ¢D×L(mm)	Leakage Current (µA)	ESR (mΩ max/20℃, 100k to 300kHz)	Rated ripple current (mArms/105℃, 100kHz)	Part No.
	560	8×8	500	7	6,100	APSC2R5EDD561MH08S
2.5	820	8×8	500	7	6,100	APSC2R5EDD821MH08S
2.5	1,000	8×11.5	500	7	6,100	APSC2R5E□□102MHB5S
	2,700	10×11.5	1,350	8	5,560	APSC2R5EDD272MJB5S
	560	8×8	500	7	6,100	APSC4R0E□□561MH08S
4	680	8×11.5	544	7	6,100	APSC4R0E□□681MHB5S
	1,000	10×11.5	800	6	6,640	APSC4R0E□□102MJB5S
	470	8×8	592	8	5,700	APSC6R3EDD471MH08S
6.3	820	10×11.5	1,033	7	6,640	APSC6R3E□□821MJB5S
	1,500	10×11.5	1,890	10	5,560	APSC6R3E□□152MJB5S
10	390	8×11.5	780	9	5,650	APSC100EDD391MHB5S
10	680	10×11.5	1,360	7	6,100	APSC100E□□681MJB5S
	270	8×11.5	864	11	5,080	APSC160EDD271MHB5S
16	330	10×12.5	1,056	10	6,100	APSC160EDD331MJC5S
	470	10×11.5	1,504	10	6,100	APSC160EDD471MJB5S

 $\Box\Box$: Fill with appropriate lead forming or taping code.

PSC

PSA

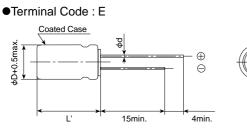
PS

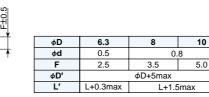
Low profile

Lower ESR

Lower ESR

- •Super low ESR, high temperature resistance and high ripple current capability
- •Rated voltage range : 2.5 to 16Vdc
- ●Endurance : 2,000 hours at 105℃
- •Suitable for DC-DC converters, voltage regulators and decoupling applications for computer motherboards
- RoHS Compliant

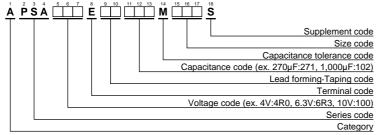

\$SPECIFICATIONS


Items	Characteristics					
Category Temperature Range	−55 to +105℃	–55 to +105℃				
Rated Voltage Range	2.5 to 16Vdc					
Capacitance Tolerance	±20% (M)		(at 20°C, 120Hz)			
Surge Voltage	Rated voltage(V)×1.15		(at 105°C)			
Leakage Current	I=0.2CV (max.)					
*Note	Where, I : Leakage curre	ent (μA), C : Nominal capacitance (μF), V	': Rated voltage (Vdc) (at 20°C after 2 minutes)			
Dissipation Factor (tan∂)	0.08 max. (FA5 size : 0.	12max.)	(at 20°C, 120Hz)			
Low Temperature	Z(-25°C)/Z(+20°C)≦1.15	5	· · · · · · · · · · · · · · · · · · ·			
Characteristics	Z(-55°C)/Z(+20°C)≦1.25	5				
(Max. Impedance Ratio)			(at 100kHz)			
Endurance	The following specification at 105°C.	ons shall be satisfied when the capacitors	s are restored to 20° C after the rated voltage is applied for 2,000 hours			
	Appearance	No significant damage				
	Capacitance change	≦±20% of the initial measured value				
	D.F. (tanδ)	≦150% of the initial specified value				
	ESR	≦150% of the initial specified value				
	Leakage current	≦The initial specified value				
Bias Humidity Test	The following specificat 90 to 95% RH for 1,000		ors are restored to 20°C after subjecting them to DC voltage at 60°C,			
	Appearance	No significant damage				
	Capacitance change	≦±20% of the initial measured value				
	D.F. (tanδ)	≦150% of the initial specified value				
	ESR	≦150% of the initial specified value				
	Leakage current	≦The initial specified value				
Surge Voltage Test	v		ng of charge with the surge voltage specified at 105°C for 30 seconds			
ealige reliage reer	through a protective resistor ($R=1k\Omega$) and discharge for 5 minutes 30 seconds.					
	Appearance	No significant damage				
	Capacitance change	≦±20% of the initial measured value				
	D.F. (tanδ)	≦150% of the initial specified value				
	ESR	\leq 150% of the initial specified value				
	Leakage current	≦The initial specified value				
Failure Rate	U	kimum (Confidence level 60% at 105°C)				

*Note : If any doubt arises, measure the leakage current after the following voltage treatment.

Voltage treatment : DC rated voltage is applied to the capacitors for 120 minutes at 105°C.

◆DIMENSIONS [mm]



♦PART NUMBERING SYSTEM

Please refer to "A guide to global code (conductive polymer type)"

♦STANDARD RATINGS

WV(Vdc)	Cap(µF)	Case size ¢D×L(mm)	ESR (mΩmax/20℃, 100k to 300kHz)	Rated ripple current (mArms/105℃, 100kHz)	Part No.
	390	6.3×10.5	20	3,160	APSA2R5EDD391MFA5S
2.5	680	8×11.5	7	5,580	APSA2R5EDD681MHB5S
2.5	820	8×11.5	7	5,580	APSA2R5E□□821MHB5S
	1,000	10×11.5	6	5,860	APSA2R5EDD102MJB5S
	270	6.3×10.5	20	3,160	APSA4R0E□□271MFA5S
	390	6.3×10.5	24	3,300	APSA4R0EDD391MFA5S
4	560	8×11.5	7	5,580	APSA4R0EDD561MHB5S
	820	10×11.5	6	5,860	APSA4R0E□□821MJB5S
	220	6.3×10.5	20	3,160	APSA6R3EDD221MFA5S
6.3	330	6.3×10.5	28	3,190	APSA6R3EDD331MFA5S
0.3	390	8×11.5	8	5,080	APSA6R3EDD391MHB5S
	680	10×11.5	7	5,860	APSA6R3EDD681MJB5S
	47	6.3×10.5	25	2,820	APSA100EDD470MFA5S
	68	6.3×10.5	25	2,820	APSA100EDD680MFA5S
10	100	6.3×10.5	25	2,820	APSA100EDD101MFA5S
10	150	6.3×10.5	25	2,820	APSA100EDD151MFA5S
	270	8×11.5	9	4,710	APSA100EDD271MHB5S
	470	10×11.5	8	5,650	APSA100EDD471MJB5S
16	100	6.3×10.5	25	2,820	APSA160EDD101MFA5S

□□ : Fill with appropriate lead forming or taping code.

CONDUCTIVE POLYMER ALUMINUM SOLID CAPACITORS

•Super low ESR, high temperature resistance

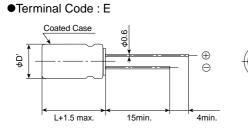
- •Large capacitance & Improved high ripple current capability
- ●Rated voltage range : 2.5 to 35Vdc
- ●Endurance : 2,000 hours at 105℃
- •Suitable for DC-DC converters, voltage regulators and decoupling applications
- For computer motherboards

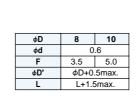
RoHS Compliant

\$SPECIFICATIONS

Items		Chara	acteristics				
Category Temperature Range	–55 to +105℃	-55 to +105℃					
Rated Voltage Range	2.5 to 35V _{dc}						
Capacitance Tolerance	±20% (M)			(at 20°C, 120Hz)			
Surge Voltage	Rated voltage(V)×1.15			(at 105℃)			
Leakage Current *Note	()(voltage 2.5 to 25Vdc) / I=0.5CV (max.) (Rater to (μA), C : Nominal capacitance (μF), V	o ,	(at 20℃ after 2 minutes)			
Dissipation Factor (tan∂)	0.12 max.			(at 20℃, 120Hz)			
Low Temperature	Z(–25°C)/Z(+20°C)≦1.1	5		· · · · ·			
Characteristics	Z(–55℃)/Z(+20℃)≦1.2	5					
(Max. Impedance Ratio)				(at 100kHz)			
Endurance	The following specifications shall be satisfied when the capacitors are restored to 20°C after the rated voltage is applied at 105°C.						
	Appearance	No significant damage					
	Capacitance change	$\leq \pm 20\%$ of the initial measured value					
	D.F. (tanδ)	≦150% of the initial specified value					
	ESR	≦150% of the initial specified value					
	Leakage current	≦The initial specified value					
Bias Humidity Test	The following specifica	tions shall be satisfied when the capacito	ors are restored to 20°C after subject	ting them to DC voltage at 60℃,			
	90 to 95% RH for 500 hours.						
	Appearance	No significant damage					
	Capacitance change	≦±20% of the initial measured value					
	D.F. (tanδ)	≦150% of the initial specified value					
	ESR	≦150% of the initial specified value					
	Leakage current	≦The initial specified value					
Surge Voltage Test	The capacitors shall be	subjected to 1,000 cycles each consisting	ng of charge with the surge voltage	specified at 105°C for 30 seconds			
	through a protective re	sistor(R=1kΩ) and discharge for 5 minute	es 30 seconds.				
	Appearance	No significant damage					
	Capacitance change	≦±20% of the initial measured value					
	D.F. (tanδ)	≦150% of the initial specified value					
	ESR	≦150% of the initial specified value					
	Leakage current	≦The initial specified value					
Failure Rate	1% per 1,000 hours ma	ximum (Confidence level 60% at 105℃)					

PSA


PS

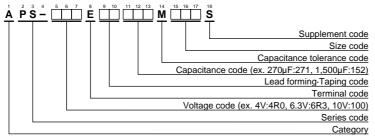

Lower ESR

*Note : If any doubt arises, measure the leakage current after the following voltage treatment.

Voltage treatment : DC rated voltage is applied to the capacitors for 120 minutes at 105°C.

◆DIMENSIONS [mm]

MARKING



CAT. No. E1001G

Upgrade! NPCAP™- PS Series

♦PART NUMBERING SYSTEM

Please refer to "A guide to global code (conductive polymer type)"

♦STANDARD RATINGS

WV(Vdc)	Cap(µF)	Case size ¢D×L(mm)	ESR (mΩmax/20℃, 100k to 300kHz)	Rated ripple current (mArms/105℃, 100kHz)	Part No.
2.5	680	8×11.5	10	5,230	APS-2R5EDD681MHB5S
2.5	1,500	10×12.5	8	5,500	APS-2R5EDD152MJC5S
4	560	8×11.5	10	5,230	APS-4R0EDD561MHB5S
4	820	10×12.5	8	5,500	APS-4R0EDD821MJC5S
6.3	390	8×11.5	12	4,770	APS-6R3EDD391MHB5S
0.3	680	10×12.5	10	5,500	APS-6R3EDD681MJC5S
10	270	8×11.5	14	4,420	APS-100EDD271MHB5S
10	470	10×12.5	12	5,300	APS-100E□□471MJC5S
16	180	8×11.5	16	4,360	APS-160EDD181MHB5S
10	330	10×12.5	14	5,050	APS-160EDD331MJC5S
20	100	8×11.5	24	3,320	APS-200E□□101MHB5S
20	150	10×12.5	20	4,320	APS-200EDD151MJC5S
25	68	8×11.5	24	3,320	APS-250E□□680MHB5S
25	100	10×12.5	20	4,320	APS-250E□□101MJC5S
35	18	8 ×11.5	34	2,830	APS-350E□□180MHB5S
- 35	33	10 ×12.5	30	3,270	APS-350E□□330MJC5S

□□ : Fill with appropriate lead forming or taping code.

Appendix (Global code)

♦Capacitance code

* How to use the table			
1st			
2nd	Cap. Value		

Capacitance value part

2					1st				
2nd	1	2	3	4	5	6	7	8	9
0	10.0	20.0	30.0	40.0	50.0	60.0	70.0	80.0	90.0
Α	10.5	20.5	30.5	40.5	50.5	60.5	70.5	80.5	90.5
1	11.0	21.0	31.0	41.0	51.0	61.0	71.0	81.0	91.0
В	11.5	21.5	31.5	41.5	51.5	61.5	71.5	81.5	91.5
2	12.0	22.0	32.0	42.0	52.0	62.0	72.0	82.0	92.0
С	12.5	22.5	32.5	42.5	52.5	62.5	72.5	82.5	92.5
3	13.0	23.0	33.0	43.0	53.0	63.0	73.0	83.0	93.0
D	13.5	23.5	33.5	43.5	53.5	63.5	73.5	83.5	93.5
4	14.0	24.0	34.0	44.0	54.0	64.0	74.0	84.0	94.0
ш	14.5	24.5	34.5	44.5	54.5	64.5	74.5	84.5	94.5
5	15.0	25.0	35.0	45.0	55.0	65.0	75.0	85.0	95.0
F	15.5	25.5	35.5	45.5	55.5	65.5	75.5	85.5	95.5
6	16.0	26.0	36.0	46.0	56.0	66.0	76.0	86.0	96.0
G	16.5	26.5	36.5	46.5	56.5	66.5	76.5	86.5	96.5
7	17.0	27.0	37.0	47.0	57.0	67.0	77.0	87.0	97.0
Η	17.5	27.5	37.5	47.5	57.5	67.5	77.5	87.5	97.5
8	18.0	28.0	38.0	48.0	58.0	68.0	78.0	88.0	98.0
J	18.5	28.5	38.5	48.5	58.5	68.5	78.5	88.5	98.5
9	19.0	29.0	39.0	49.0	59.0	69.0	79.0	89.0	99.0
к	19.5	29.5	39.5	49.5	59.5	69.5	79.5	89.5	99.5

For less than $10\mu F$, a decimal point position is displayed with R. For $10\mu F$ or more, capacitance code is set to the first 2 digits and index (1digit). Treatment of fraction (Refer to the table)

Example	of	conversion
---------	----	------------

Poal can		The first	The first Treatment		Code	
Real cap.	Real cap.		of fraction	11th	12th	13th
10.0μF	\rightarrow	10.0 →	10.0 →	1	0	0
10.1µF	\rightarrow	10.1 →	10.0 →	1	0	0
10.2µF	\rightarrow	10.2 →	10.0 →	1	0	0
10.3μF	\rightarrow	10.3 →	10.5 →	1	Α	0
10.4µF	\rightarrow	10.4 →	10.5 →	1	Α	0
10.5µF	\rightarrow	10.5 →	10.5 →	1	Α	0
10.6µF	\rightarrow	10.6 →	10.5 →	1	Α	0
10.7µF	\rightarrow	10.7 →	10.5 →	1	Α	0
10.8μF	\rightarrow	10.8 →	11.0 →	1	1	0
10.9µF	\rightarrow	10.9 →	11.0 →	1	1	0
11.0μF	\rightarrow	11.0 →	11.0 →	1	1	0
132µF	\rightarrow	13.2 →	13.0 →	1	3	1
133µF	\rightarrow	13.3 →	13.5 →	1	D	1
167µF	\rightarrow	16.7 →	16.5 →	1	G	1
168µF	\rightarrow	16.8 →	17.0 →	1	7	1
1110μF	\rightarrow	11.1 →	11.0 →	1	1	2
1340µF	\rightarrow	13.4 →	13.5 →	1	D	2
13200µF	\rightarrow	13.2 →	13.0 →	1	3	3
13600µF	\rightarrow	13.6 →	13.5 →	1	D	3
270000µF	\rightarrow	27.0 →	27.0 →	2	7	4

Case length (Radial lead type)

Case length [mm]	16th	17th												
0.0	_	—	1.0	0	1	2.0	0	2	3.0	0	3	4.0	0	4
0.1	0	В	1.1	1	В	2.1	2	В	3.1	3	В	4.1	4	В
0.2	0	С	1.2	1	С	2.2	2	С	3.2	3	С	4.2	4	С
0.3	0	D	1.3	1	D	2.3	2	D	3.3	3	D	4.3	4	D
0.4	0	Е	1.4	1	E	2.4	2	Е	3.4	3	E	4.4	4	E
0.5	0	F	1.5	1	F	2.5	2	F	3.5	3	F	4.5	4	F
0.6	0	G	1.6	1	G	2.6	2	G	3.6	3	G	4.6	4	G
0.7	0	Н	1.7	1	Н	2.7	2	Н	3.7	3	Н	4.7	4	Н
0.8	0	J	1.8	1	L	2.8	2	J	3.8	3	J	4.8	4	J
0.9	0	K	1.9	1	К	2.9	2	К	3.9	3	К	4.9	4	K
Case length [mm]	16th	17th												
5.0	0	5	6.0	0	6	7.0	0	7	8.0	0	8	9.0	0	9
5.1	5	В	6.1	6	В	7.1	7	В	8.1	8	В	9.1	9	В
5.2	5	С	6.2	6	С	7.2	7	С	8.2	8	С	9.2	9	С
5.3	5	D	6.3	6	D	7.3	7	D	8.3	8	D	9.3	9	D
5.4	5	Е	6.4	6	E	7.4	7	Е	8.4	8	E	9.4	9	E
5.5	5	F	6.5	6	F	7.5	7	F	8.5	8	F	9.5	9	F
5.6	5	G	6.6	6	G	7.6	7	G	8.6	8	G	9.6	9	G
5.7	5	Н	6.7	6	Н	7.7	7	Н	8.7	8	н	9.7	9	Н
5.8	5	J	6.8	6	L	7.8	7	J	8.8	8	J	9.8	9	J
5.9	5	K	6.9	6	К	7.9	7	K	8.9	8	К	9.9	9	K
Case length [mm]	16th	17th												
10.0	1	0	11.0	1	1	12.0	1	2	13.0	1	3	14.0	1	4
10.1	Α	1	11.1	В	1	12.1	С	1	13.1	D	1	14.1	E	1
10.2	А	2	11.2	В	2	12.2	С	2	13.2	D	2	14.2	Е	2
10.3	А	3	11.3	В	3	12.3	С	3	13.3	D	3	14.3	Е	3
10.4	Α	4	11.4	В	4	12.4	С	4	13.4	D	4	14.4	Е	4
10.5	А	5	11.5	В	5	12.5	С	5	13.5	D	5	14.5	Е	5
10.6	А	6	11.6	В	6	12.6	С	6	13.6	D	6	14.6	Е	6
10.7	Α	7	11.7	В	7	12.7	С	7	13.7	D	7	14.7	Е	7
10.8	А	8	11.8	В	8	12.8	С	8	13.8	D	8	14.8	Е	8
10.9	А	9	11.9	В	9	12.9	С	9	13.9	D	9	14.9	Е	9

PART NUMBERING SYSTEM

Case length [mm]	16th	17th	Ca
15.0	1	5	
15.1	F	1	
15.2	F	2	
15.3	F	3	
15.4	F	4	
15.5	F	5	
15.6	F	6	
15.7	F	7	
15.8	F	8	
15.9	F	9	

e length [mm]	16th	17th	C
16.0	1	6	
16.1	G	1	
16.2	G	2	
16.3	G	3	
16.4	G	4	
16.5	G	5	
16.6	G	6	
16.7	G	7	
16.8	G	8	
16.9	G	9	

I	Case length [mm]	16th	17tł
	17.0	1	7
	17.1	Н	1
	17.2	Н	2
	17.3	н	3
	17.4	Н	4
	17.5	н	5
	17.6	Н	6
	17.7	н	7
	17.8	Н	8
	17.9	Н	9
_			

Case length [mm]	16th	17th
18.0	1	8
18.1	J	1
18.2	J	2
18.3	J	3
18.4	J	4
18.5	J	5
18.6	J	6
18.7	J	7
18.8	J	8
18.9	J	9

Case length [mm]	16th	17th
19.0	1	9
19.1	К	1
19.2	К	2
19.3	К	3
19.4	К	4
19.5	К	5
19.6	К	6
19.7	К	7
19.8	К	8
19.9	К	9

Case length [mm]	16th	17th	Case [
20.0	2	0	
20.5	L	1	:
21.0	2	1	:
21.5	L	3	:
22.0	2	2	:
22.5	L	5	:
23.0	2	3	:
23.5	L	7	:
24.0	2	4	:
24.5	L	9	:
25.0	2	5	:
25.5	М	1	:
26.0	2	6	:
26.5	М	3	:
27.0	2	7	:
27.5	М	5	:
28.0	2	8	:
28.5	М	7	:
29.0	2	9	:
29.5	М	9	

17th	Case length [mm]	16th	17th
0	30.0	3	0
1	30.5	Ν	1
1	31.0	3	1
3	31.5	Ν	3
2	32.0	3	2
5	32.5	Ν	5
3	33.0	3	3
7	33.5	Ν	7
4	34.0	3	4
9	34.5	Ν	9
5	35.0	3	5
1	35.5	Р	1
6	36.0	3	6
3	36.5	Р	3
7	37.0	3	7
5	37.5	Р	5
8	38.0	3	8
7	38.5	Р	7
9	39.0	3	9
9	39.5	Р	9
	0 1 1 3 2 5 3 7 4 9 5 1 6 3 7 5 8 7 9	[mm] 0 30.0 1 30.5 1 31.0 3 31.5 2 32.0 5 32.5 3 33.0 7 33.5 4 34.0 9 34.5 5 35.0 1 35.5 6 36.0 3 36.5 7 37.0 5 37.5 8 38.0 7 38.5 9 39.0	[mm] loin 0 30.0 3 1 30.5 N 1 31.0 3 3 31.5 N 2 32.0 3 5 32.5 N 3 33.0 3 7 33.5 N 4 34.0 3 9 34.5 N 5 35.0 3 1 35.5 P 6 36.0 3 3 36.5 P 7 37.0 3 5 38.0 3 7 38.5 P 8 38.0 3 7 39.0 3

_			
h	Case length [mm]	16th	17th
	17.0	1	7
	17.1	Н	1
	17.2	Н	2
	17.3	н	3
	17.4	Н	4
	17.5	Н	5
	17.6	Н	6
	17.7	Н	7
	17.8	н	8
	17.9	Н	9
n	Case length [mm]	16th	17th
	40.0	4	0
	40.5	Q	1
	41.0	4	1
	41.5	Q	3
	42.0	4	2
	42.5	Q	5
	43.0	4	3
	43.5	Q	7
	44.0	4	4
	44.5	Q	9
	45.0	4	5
	45.5	R	1
	46.0	4	6
	46.5	R	3
	47.0	4	7
	47.5	R	5
	48.0	4	8
	48.5	R	7
	49.0	4	9
	49.5	R	9

Case length [mm]	16th	17th
50.0	5	0
50.5	S	1
51.0	5	1
51.5	S	3
52.0	5	2
52.5	S	5
53.0	5	3
53.5	S	7
54.0	5	4
54.5	S	9
55.0	5	5
55.5	Т	1
56.0	5	6
56.5	Т	3
57.0	5	7
57.5	Т	5
58.0	5	8
58.5	Т	7
59.0	5	9
59.5	Т	9

Case length [mm]	16th	17th
60.0	6	0
60.5	U	1
61.0	6	1
61.5	U	3
62.0	6	2
62.5	U	5
63.0	6	3
63.5	U	7
64.0	6	4
64.5	U	9
65.0	6	5
65.5	V	1
66.0	6	6
66.5	V	3
67.0	6	7
67.5	V	5
68.0	6	8
68.5	V	7
69.0	6	9
69.5	V	9

Case length [mm]	16th	17th		length m]	16th	17th
70.0	7	0	80	0.0	8	0
70.5	W	1	80	0.5	Y	1
71.0	7	1	81	1.0	8	1
71.5	W	3	81	1.5	Y	3
72.0	7	2	82	2.0	8	2
72.5	W	5	82	2.5	Y	5
73.0	7	3	83	3.0	8	3
73.5	W	7	83	3.5	Y	7
74.0	7	4	84	4.0	8	4
74.5	W	9	84	4.5	Y	9
75.0	7	5	85	5.0	8	5
75.5	Х	1	85	5.5	Z	1
76.0	7	6	86	6.0	8	6
76.5	Х	3	86	6.5	Z	3
77.0	7	7	87	7.0	8	7
77.5	Х	5	87	7.5	Z	5
78.0	7	8	88	3.0	8	8
78.5	Х	7	88	3.5	Z	7
79.0	7	9	89	9.0	8	9
79.5	Х	9	89	9.5	Z	9

Case length (Snap-in type / Screw mount terminal type)

mm low rwm low low low low low low low low low <thlow< th=""> <thlow< th=""> <thlow< th=""></thlow<></thlow<></thlow<>	• • • • • •	<u> </u>	()												
21 2 1 31 3 1 44 4 1 51 5 1 22 2 3 3 3 3 44 4 2 5 3 64 64 4 2 5 3 64 4				[mm]			[mm]			[mm]	Touri		[mm]		
22 2 2 2 3 3 3 3 3 3 3 4 3 4 3 5 5 5 2 6	20					0		4	0	50		0	60	6	
23 2 3 3 3 43 44 4 4 54 54 54 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 </td <td>21</td> <td>2</td> <td>1</td> <td>31</td> <td>3</td> <td>1</td> <td>41</td> <td>4</td> <td>1</td> <td></td> <td>5</td> <td>1</td> <td>61</td> <td>6</td> <td>1</td>	21	2	1	31	3	1	41	4	1		5	1	61	6	1
24 2 4 3 4 44 55 6 7 7 7 7 8 8 8 8 9 9 1 100 A 111 8 3 113 1 111 8 3 1111 8 3 1111	22	2	2	32	3	2	42	4	2	52	5	2	62	6	2
25 2 5 3 5 45 4 5 55 5 6 6 6 6 5 28 2 7 3 7 47 4 7 55 5 6 </td <td>23</td> <td>2</td> <td>3</td> <td>33</td> <td>3</td> <td>3</td> <td>43</td> <td>4</td> <td>3</td> <td>53</td> <td>5</td> <td>3</td> <td>63</td> <td>6</td> <td>3</td>	23	2	3	33	3	3	43	4	3	53	5	3	63	6	3
26 2 0 36 3 6 46 4 6 27 2 9 38 3 6 44 4 7 28 2 9 39 3 9 49 4 9 55 6 6 6 8 29 2 9 39 3 9 49 4 9 55 6 6 6 8 8 6 8 8 9	24	2	4	34	3	4	44	4	4	54	5	4	64	6	4
27 2 7 3 7 47 4 7 58 5 6 7 6 7 6 6 7 28 2 9 38 3 8 3 9 3 9 44 4 8 9 5 8 6 6 8 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 <th< td=""><td>25</td><td>2</td><td>5</td><td>35</td><td>3</td><td>5</td><td>45</td><td>4</td><td>5</td><td>55</td><td>5</td><td>5</td><td>65</td><td>6</td><td>5</td></th<>	25	2	5	35	3	5	45	4	5	55	5	5	65	6	5
28 2 8 38 3 8 48 4 8 56 5 6 68 6 8 20 2 9 38 3 8 49 4 9 59 5 9 6 6 6 9 Case length (mm) 16th 17th 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 9 9 0 101 A 111 B 0 74 7 7 8 8 8 5 5 9 5 106 A 6 9 6 103 A 103 103 103 103 </td <td>26</td> <td></td> <td>6</td> <td>36</td> <td>3</td> <td>6</td> <td>46</td> <td>4</td> <td>6</td> <td>56</td> <td>5</td> <td></td> <td>66</td> <td>6</td> <td>6</td>	26		6	36	3	6	46	4	6	56	5		66	6	6
28 2 8 38 3 8 48 4 8 56 5 6 68 6 8 20 2 9 38 3 8 49 4 9 59 5 9 6 6 6 9 Case length (mm) 16th 17th 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 9 9 0 101 A 111 B 0 74 7 7 8 8 8 5 5 9 5 106 A 6 9 6 103 A 103 103 103 103 </td <td>27</td> <td>2</td> <td>7</td> <td>37</td> <td>3</td> <td>7</td> <td>47</td> <td>4</td> <td>7</td> <td>57</td> <td>5</td> <td>7</td> <td>67</td> <td>6</td> <td>7</td>	27	2	7	37	3	7	47	4	7	57	5	7	67	6	7
29 2 9 39 3 9 49 4 9 59 5 9 69 6 9 Case length 71 7 0 110 111 111 111 111 111 1111 111 111 111 <td></td>															
Case length Torm Tork Torm Case length Torm Tork Tork Case length Tork Tork Tork Case length Tork Tork T															
mm losh losh <thl>losh losh <thl< td=""><td>20</td><td>-</td><td>Ū</td><td></td><td>0</td><td>Ū</td><td>40</td><td>•</td><td>Ū</td><td></td><td></td><td>Ū</td><td>00</td><td></td><td></td></thl<></thl>	20	-	Ū		0	Ū	40	•	Ū			Ū	00		
71 7 1 81 8 1 91 9 1 101 A 1 111 B 1 72 7 2 83 8 3 3 91 91 91 91 91 91 91 101 A 1 111 B 1 112 2 2 3 3 3 104 A 2 113 B 3 3 104 A 2 113 B 3 3 104 A 3 114 B 4 111 B 3 111 B 3 1111	Case length [mm]	16th	17th		16th	17th		16th	17th		16th	17th		16th	17th
77 7 2 82 8 2 92 9 2 102 A 2 113 8 3<	70	7	0	80	8	0	90	9	0	100	A	0	110	В	0
737383837474838393937474848475758685767686869797777878889999999106A61777788897978889999978788899999797788899999710016th17th77777787888999999797777777787888999999710016th17th777122C2133D3144C143E3154F4155F6156F6157F7128C8129C912816417th12916417th12016417th121164122123 </td <td>71</td> <td>7</td> <td>1</td> <td>81</td> <td>8</td> <td>1</td> <td>91</td> <td>9</td> <td>1</td> <td>101</td> <td>A</td> <td>1</td> <td>111</td> <td>В</td> <td>1</td>	71	7	1	81	8	1	91	9	1	101	A	1	111	В	1
74 7 4 84 8 4 94 9 4 104 A 4 75 7 5 66 8 6 95 9 5 106 A 4 115 B 5 116 B 6 76 7 6 67 8 8 9 9 9 7 7 7 7 7 7 7 8 8 8 9 108 A 4 170 180 170 118 170 118 171 118 161 170 161 171 161 171 161 <th164< th=""></th164<>	72	7	2	82	8	2	92	9	2	102	Α	2	112	В	2
75 7 5 88 8 5 76 7 6 88 6 99 9 6 106 A 5 115 B 5 77 7 7 88 8 6 97 9 7 106 A 6 116 B 6 77 7 7 88 8 9 98 9 106 6 116 <	73	7	3	83	8	3	93	9	3	103	A	3	113	В	3
75 7 5 85 8 5 96 9 5 106 A 5 115 B 5 76 7 6 86 8 6 97 9 7 106 A 5 115 B 5 77 7 7 7 7 7 7 7 7 88 8 9 160 160 16	74	7	4	84	8	4	94	9	4	104	A	4	114	В	4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	75						95			105					-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													-		
78 7 8 88 8 9															
79 7 9 89 8 9 99 9 9 90 90 109 A 90 119 B 9 Case length (mm) 16th 17th 162 G 0 122 C 3 134 D 4 144 E 4 155 F 0 161 G 0 162 G 2 163 G 3 1144 E 4 155 F 6 166 G 6 <td< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>-</td></td<>				-			-			-					-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$															
	13	'	3	03	0	3	- 33	3	3	103		3	113		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Case length [mm]	16th	17th		16th	17th		16th	17th		16th	17th		16th	17th
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	120	С	0	130	D	0	140	E	0	150	F	0	160	G	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	121	С	1	131	D	1	141	Е	1	151	F	1	161	G	1
124 C 4 134 D 4 144 E 4 154 F 4 125 C 5 136 D 6 145 E 5 156 F 5 126 C 6 137 D 7 146 E 6 157 F 7 166 G 6	122	С	2	132	D	2	142	Е	2	152	F	2	162	G	2
125 C 5 126 C 6 127 C 7 128 C 8 129 C 9 138 D 8 129 C 9 138 D 8 129 C 9 138 D 8 139 D 9 Case length (mm) 16th 17th 170 H 0 171 H 1 180 J 0 181 J 1 182 J 2 173 H 3 174 H 4 175 H 5 186 J 6 197 K 7 198 K 8 177 H 7 188 J 8 199 K 9 Case length (mm) 16th (17th (mm) (mm) 186b 16	123	С	3	133	D	3	143	Е	3	153	F	3	163	G	3
126 C 6 127 C 7 128 C 8 129 C 9 136 D 6 127 C 7 138 D 8 129 C 9 146 E 6 127 C 7 138 D 8 129 C 9 144 E 8 129 C 9 148 E 8 138 D 0 1 144 E 8 170 H 0 16th 17th 188 J 1 172 H 2 1 <th1< th=""> 1 <th1< th=""></th1<></th1<>	124	С	4	134	D	4	144	Е	4	154	F	4	164	G	4
126 C 6 127 C 7 128 C 8 129 C 9 136 D 6 127 C 7 138 D 8 129 C 9 146 E 6 127 C 7 138 D 8 129 C 9 144 E 8 129 C 9 148 E 8 138 D 0 1 144 E 8 170 H 0 16th 17th 188 J 1 172 H 2 1 <th1< th=""> 1 <th1< th=""></th1<></th1<>	125	С	5	135	D	5	145	E	5	155	F	5	165	G	5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					D										
128 C 8 138 D 8 129 C 9 138 D 9 148 E 8 158 F 8 168 G 8 129 C 9 139 D 9 148 E 8 158 F 8 168 G 8 120 C 9 Case length 16th 17th 159 F 9 16th 17th 170 H 0 181 J 1 190 K 0 200 L 0 210 M 210 M 210 M 211 M 1 1 122 K 2 203 L 3 211 M 1 210 M 211 M 4 212 M 3 3 3 3 193 K 3 204 L 4 213 M 3 214 M 4 215 M 3 214 M 4 215 166															
129 C 9 139 D 9 149 E 9 159 F 9 169 G 9 Case length (mm] 16th 17th (mm] 6th 17th (mm] 16th 17th (mm] 16th 17th (mm] 6ase length (mm] 16th 17th (mm] Case length (mm] 16th 17th															
Case length [mm] 16th 17th [mm] Case length [mm] 16th 17th [mm] Case length 180 16th 17th [mm] Case length 181 16th 17th [mm] Case length 181 16th 17th [mm] Case length 182 16th 17th [mm] Case length 181 16th 17th 182 Case length 183 16th 17th 192 Case length 200 16th 17th 201 Case length 201 16th 17th 202 Case length 201 16th 17th 202 Case length 203 16th 17th 203 Case length 211 M 0 177 H 3 J 3 J 3 J 3 J															-
(mm) 10.1	123	U	9	139	D	9	143	L	9	155		9	103		9
171 H 1	Case length [mm]	16th	17th		16th	17th		16th	17th		16th	17th		16th	17th
172 H 2 173 H 2 173 H 3 174 H 4 175 H 5 176 H 6 177 H 7 188 J 5 176 H 6 177 H 7 188 J 8 179 H 9 Case length [mm] 16th 17th [mm] 16th 17th [mm] 16th 17th [mm] Case length 16th 17th [mm] 220 N 0 2222 N 2	170	Н	0	180	J	0	190	K	0	200	L	0	210	М	0
173 H 3 173 H 3 174 H 4 175 H 5 176 H 6 177 H 7 186 J 6 187 J 7 188 J 8 177 H 7 178 H 8 179 H 9 7 188 J 8 189 J 9 7 198 K 6 197 K 7 198 K 8 199 K 9 7 198 K 8 199 K 9 7 208 L 8 209 L 9 7 208 L 8 219 M 9 7 200 P 0 221 N 1 1 222 N <td>171</td> <td>Н</td> <td>1</td> <td>181</td> <td>J</td> <td>1</td> <td>191</td> <td>К</td> <td>1</td> <td>201</td> <td></td> <td>1</td> <td>211</td> <td>М</td> <td>1</td>	171	Н	1	181	J	1	191	К	1	201		1	211	М	1
174 H 4 175 H 5 176 H 6 177 H 7 188 J 6 177 H 7 178 H 8 179 H 9 188 J 8 199 K 6 197 K 7 188 J 8 199 K 9 208 L 8 209 L 9 214 M 4 217 M 7 188 J 8 199 K 9 208 L 8 209 L 9 218 M 8 219 M 9 220 N 0 231 P 231 P 1 240 0 0 221 N 3 234 P 4 2	172	Н	2	182	J	2	192	K	2	202	L	2	212	М	2
175 H 5 176 H 6 177 H 7 178 H 8 179 H 9 Case length 16th 17th [mm] 16th 17th [mm] 220 N 0 221 N 1 222 N 2 223 N 3 224 N 4 225 N 5 226 N 6 227 N 7 228 N 8	173	Н	3	183	J	3	193	К	3	203	L	3	213	М	3
175 H 5 176 H 6 177 H 7 178 H 8 179 H 9 Case length 16th 17th [mm] 16th 17th [mm] 220 N 0 221 N 1 222 N 2 223 N 3 224 N 4 225 N 5 226 N 6 227 N 7 228 N 8	174	Н	4	184	J	4	194	К	4	204	L	4	214	М	4
176 H 6 177 H 7 178 H 8 179 H 9 188 J 8 179 H 9 189 J 9 189 J 9 189 J 9 199 K 9 Case length [mm] 16th 17th [mm] 16th 17th [mm] 220 N 0 230 P 0 221 N 1 231 P 1 222 N 2 233 P 2 233 P 3 244 0 1 242 Q 2 253 R 3 224 N 4 235 P 5 226 N 6 237 P 7 238 P 6 247 Q 7 248 Q 8 255 R 6 257 R															
177 H 7 178 H 8 179 H 9 189 J 9 Case length [mm] 16th 17th Case length [mm] 16th 17th 220 N 0 230 P 0 221 N 1 230 P 0 240 Q 0 221 N 1 233 P 3 244 Q 0 250 R 0 223 N 3 234 P 4 244 Q 4 255 R 3 224 N 4 235 P 5 246 Q 5 255 R 5 226 N 6 237 P 7 248 Q 8 255 R 6 227 N 7 238 P 8 248 Q 8 258 R 8															-
178 H 8 179 H 9 189 J 9 189 J 9 Case length [mm] 16th 17th Case length [mm] 16th 17th 220 N 0 230 P 0 240 Q 0 221 N 1 230 P 0 240 Q 0 250 R 0 222 N 2 233 P 3 244 Q 1 250 R 0 223 N 3 234 P 4 243 Q 3 251 R 1 224 N 4 235 P 5 243 Q 3 255 R 3 224 N 4 235 P 5 246 Q 5 256 R 6 227 N 7 238 P 8 248 Q 8 258 R 8															
179 H 9 189 J 9 199 K 9 209 L 9 219 M 9 Case length [mm] 16th 17th 222 N 2 231 P 3 242 Q 2 255 R 3 224 N 4 235 P 5 244 Q 4 255 R 5 226 N 6 237 P 7 248 Q 8 256															-
[mm] loth l/th [mm] loth l/th [mm] loth l/th 220 N 0 230 P 0 240 Q 0 250 R 0 221 N 1 231 P 1 241 Q 1 251 R 1 222 N 2 233 P 3 243 Q 3 253 R 3 224 N 4 234 P 4 244 Q 4 255 R 3 224 N 4 235 P 5 245 Q 5 255 R 5 226 N 6 236 P 6 246 Q 6 256 R 6 227 N 7 238 P 8 248 Q 8 258 R 8															
221 N 1 231 P 1 222 N 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2	Case length [mm]			[mm]							Toth				
222 N 2 232 P 2 223 N 3 233 P 3 243 Q 3 224 N 4 233 P 3 243 Q 3 253 R 2 224 N 4 233 P 4 244 Q 4 255 R 4 225 N 5 236 P 6 245 Q 5 255 R 5 226 N 6 236 P 6 246 Q 6 255 R 5 227 N 7 237 P 7 247 Q 7 256 R 6 228 N 8 238 P 8 248 Q 8 258 R 8															
223 N 3 233 P 3 224 N 4 234 P 4 243 Q 3 253 R 3 224 N 4 234 P 4 244 Q 4 254 R 4 225 N 5 235 P 5 245 Q 5 255 R 5 226 N 6 236 P 6 246 Q 6 255 R 6 227 N 7 237 P 7 247 Q 7 256 R 6 228 N 8 238 P 8 248 Q 8 258 R 8	221	Ν	1	231	Р	1	241	Q	1	251	R	1			
224 N 4 234 P 4 244 Q 4 225 N 5 235 P 5 245 Q 5 226 N 6 236 P 6 246 Q 6 227 N 7 237 P 7 247 Q 7 228 N 8 238 P 8 248 Q 8 255 R 5	222	Ν	2	232	Р	2	242	Q	2	252	R	2			
225 N 5 235 P 5 245 Q 5 226 N 6 236 P 6 246 Q 6 256 R 5 227 N 7 237 P 7 247 Q 7 257 R 7 228 N 8 238 P 8 248 Q 8 258 R 8	223	Ν	3	233	Р	3	243	Q	3	253	R	3			
225 N 5 235 P 5 245 Q 5 226 N 6 236 P 6 246 Q 6 256 R 5 227 N 7 237 P 7 247 Q 7 257 R 7 228 N 8 238 P 8 248 Q 8 258 R 8	224	Ν	4	234	Р	4	244	Q	4	254	R	4			
226 N 6 236 P 6 246 Q 6 227 N 7 237 P 7 247 Q 7 257 R 7 228 N 8 238 P 8 248 Q 8 258 R 8					Р										
227 N 7 237 P 7 247 Q 7 257 R 7 228 N 8 238 P 8 248 Q 8 258 R 8															
228 N 8 238 P 8 248 Q 8 258 R 8															

♦Supplement code

Surface mount type / Conductive polymer (Include Radial lead type)

	Terminal plating material (Radial lead type)				
	Sn100%	Sn-Bi	Sn-Pb		
Coating case	S	G	N		

Radial lead type / Snap-in type

		Terminal plating material (Radial lead type)				
		Sn100%	Sn-Bi	Sn-Pb		
æ	PET	S	D	С		
sleeve	Coating case	н	G	F		
r slo	Polyolefin	L	_	_		
Outer	Pb-free PVC	М	—	N		
0	PVC	В	Α	N		

* Pb-free snap-in type does not have top disk.

We also produce Pb-free snap-in type with "Top disk, Pb-free PVC sleeve and Sn100% terminal plating". In this case, supplement code (the 18th digit) becomes "T".

Screw mount terminal type

	Screw terminal
Pb-free PVC	М
Polyolefin	S
PET	С
PVC	N